1
|
Instrument-Free and Visual Detection of Salmonella Based on Magnetic Nanoparticles and an Antibody Probe Immunosensor. Int J Mol Sci 2019; 20:ijms20184645. [PMID: 31546808 PMCID: PMC6769488 DOI: 10.3390/ijms20184645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/14/2019] [Accepted: 09/17/2019] [Indexed: 11/17/2022] Open
Abstract
Salmonella, a common foodborne pathogen, causes many cases of foodborne illness and poses a threat to public health worldwide. Immunological detection systems can be combined with nanoparticles to develop sensitive and portable detection technologies for timely screening of Salmonella infections. Here, we developed an antibody-probe-based immuno-N-hydroxysuccinimide (NHS) bead (AIB) system to detect Salmonella. After adding the antibody probe, Salmonella accumulated in the samples on the surfaces of the immuno-NHS beads (INBs), forming a sandwich structure (INB–Salmonella–probes). We demonstrated the utility of our AIB diagnostic system for detecting Salmonella in water, milk, and eggs, with a sensitivity of 9 CFU mL−1 in less than 50 min. The AIB diagnostic system exhibits highly specific detection and no cross-reaction with other similar microbial strains. With no specialized equipment or technical requirements, the AIB diagnostic method can be used for visual, rapid, and point-of-care detection of Salmonella.
Collapse
|
2
|
Hu J, Huang R, Wang Y, Wei X, Wang Z, Geng Y, Jing J, Gao H, Sun X, Dong C, Jiang C. Development of duplex PCR-ELISA for simultaneous detection of Salmonella spp. and Escherichia coli O157: H7 in food. J Microbiol Methods 2018; 154:127-133. [PMID: 30393180 DOI: 10.1016/j.mimet.2018.10.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 10/26/2018] [Indexed: 11/28/2022]
Abstract
In the current study, a duplex PCR-ELISA method was developed targeting the specific genes, invA of Salmonella spp. and rfbE of Escherichia coli O157: H7, to detect one or both bacteria in food. In brief, PCR product amplified by PCR primer labeled with digoxin at the 5'-end and a probe labeled with biotin at the 3'-end can form dimer by nucleic acid hybridization which can be captured by binding of biotin to streptomycin coated in ELISA plate before using enzyme-labeled anti-digoxin antibody and substrate to develop color. Also, evaluation of the duplex PCR-ELISA method was conducted in different food samples including milk, juice, cabbage, shrimp, chicken, pork and beef. Results indicated that the duplex PCR-ELISA developed here was specific when using 25 non-target bacteria strains as controls and was sensitive with a limit of detection (LOD) of 1 CFU/mL, 1, 000 times higher than that of the duplex PCR method and was repeatable regardless of inter- and intra-batch variations. The duplex PCR-ELISA method established in the present study has proven to be highly specific, sensitive and repeatable. It has the potential to be applied in such fields as clinical diagnosis of food-borne diseases, food hygiene monitoring and pathogen detection in food.
Collapse
Affiliation(s)
- Jinqiang Hu
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450000, Henan Province, China; International Joint Laboratory of Food Safety, Zhengzhou 450000, Henan Province, China; Collaborative Innovation Center of Food Production and Safety, Zhengzhou 450000, Henan Province, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450000, Henan Province, China.
| | - Runna Huang
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450000, Henan Province, China
| | - Yi Wang
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450000, Henan Province, China
| | - Xiangke Wei
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450000, Henan Province, China
| | - Zhangcun Wang
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450000, Henan Province, China
| | - Yao Geng
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450000, Henan Province, China; International Joint Laboratory of Food Safety, Zhengzhou 450000, Henan Province, China
| | - Jianzhou Jing
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450000, Henan Province, China; International Joint Laboratory of Food Safety, Zhengzhou 450000, Henan Province, China
| | - Hui Gao
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450000, Henan Province, China; International Joint Laboratory of Food Safety, Zhengzhou 450000, Henan Province, China
| | - Xincheng Sun
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450000, Henan Province, China; International Joint Laboratory of Food Safety, Zhengzhou 450000, Henan Province, China
| | - Caiwen Dong
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450000, Henan Province, China
| | - Chunpeng Jiang
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450000, Henan Province, China
| |
Collapse
|
3
|
Sue MJ, Yeap SK, Omar AR, Tan SW. Application of PCR-ELISA in molecular diagnosis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:653014. [PMID: 24971343 PMCID: PMC4058250 DOI: 10.1155/2014/653014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/12/2014] [Indexed: 12/27/2022]
Abstract
Polymerase chain reaction-enzyme linked immunosorbent assay (PCR-ELISA) is an immunodetection method that can quantify PCR product directly after immobilization of biotinylated DNA on a microplate. This method, which detects nucleic acid instead of protein, is a much more sensitive method compared to conventional PCR method, with shorter analytical time and lower detection limit. Its high specificity and sensitivity, together with its semiquantitative ability, give it a huge potential to serve as a powerful detection tool in various industries such as medical, veterinary, and agricultural industries. With the recent advances in PCR-ELISA, it is envisaged that the assay is more widely recognized for its fast and sensitive detection limit which could improve overall diagnostic time and quality.
Collapse
Affiliation(s)
- Mei Jean Sue
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Swee Keong Yeap
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Abdul Rahman Omar
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Sheau Wei Tan
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| |
Collapse
|