1
|
Zwally KM, Holda E, Perez I, Kaufman PE, Lyons B, Athrey G, Taylor TM. Detection and antimicrobial resistance profiles of Salmonella enterica recovered from house fly intestinal tracts and environments of selected broiler farms in Texas. Lett Appl Microbiol 2025; 78:ovaf007. [PMID: 39890604 DOI: 10.1093/lambio/ovaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/08/2025] [Accepted: 01/17/2025] [Indexed: 02/03/2025]
Abstract
The entry of drug-resistant Salmonella enterica into the food supply is a challenge to public health and food safety. One emerging concern is the role of synanthropic insects for moving microbial pathogens throughout poultry production systems, where insects commonly thrive. We investigated the presence and phenotypic antimicrobial susceptibility of S. enterica from insect and environmental samples from broiler farms. Insects were collected throughout the broiler house and adjacent compost barn. Environmental samples (poultry feed, drinking water, fresh litter, and feces) were collected simultaneously (n = 80). Insect gastrointestinal tracts were dissected and pooled (n = 57). Recovered Salmonella isolates were serotyped and subjected to antimicrobial susceptibility testing against 14 medically important antimicrobials. Overall, six isolates were recovered from 137 total samples (4.4%): 3.5% (2/57) from adult house flies (Musca domestica), 15% (3/20) from poultry feed, and 4.8% (1/21) from litter. Salmonella Montevideo (16.7%; 1/6), Typhimurium (33.3%; 2/6), and Kentucky (50%, 3/6) were identified. All but one Salmonella isolate (83.3%; 5/6) demonstrated resistance to at least one antimicrobial. Further research should investigate movement patterns between broiler operations and food processing facilities to establish efficient biosecurity measures to prevent any instances of foodborne pathogen transmission into human food systems.
Collapse
Affiliation(s)
- Kirsten M Zwally
- Department of Animal Science, Texas A&M University, College Station, TX 77843, United States
| | - Elizabeth Holda
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, United States
| | - Isaac Perez
- Department of Entomology, Texas A&M University, College Station, TX 77843, United States
| | - Phillip E Kaufman
- Department of Entomology, Texas A&M University, College Station, TX 77843, United States
| | - Brandon Lyons
- Department of Entomology, Texas A&M University, College Station, TX 77843, United States
| | - Giridhar Athrey
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, United States
| | - T Matthew Taylor
- Department of Animal Science, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
2
|
Rattanapunya S, Deethae A, Woskie S, Kongthip P, Matthews KR. Occurrence of Antibiotic-Resistant Staphylococcus spp. in Orange Orchards in Thailand. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:246. [PMID: 35010506 PMCID: PMC8751150 DOI: 10.3390/ijerph19010246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND The widespread indiscriminate application of antibiotics to food crops to control plant disease represents a potential human health risk. In this study, the presence of antibiotic-resistant staphylococci associated with workers and orange orchard environments was determined. A total of 20 orchards (orange and other fruits) were enrolled in the study. Trees in the orange orchards were treated with ampicillin on a pre-determined schedule. Environmental samples (n = 60) included soil, water, and oranges; 152 hand and nasal samples were collected from 76 healthy workers. Antibiotic susceptibility profiles were determined for all staphylococcal isolates. RESULTS This investigation revealed that of the total Staphylococcus spp. recovered from the orange orchard, 30% (3/10) were resistant to erythromycin, 20% (2/10) were resistant to ampicillin, and 20% (2/10) resistant to both erythromycin and ampicillin. CONCLUSION The application of antibiotics to orange trees in open production environments to halt the spread of bacterial disease presents risks to the environment and creates health concerns for Thai farmers using those agents. ARB on crops such as oranges may enter the global food supply and adversely affect public health.
Collapse
Affiliation(s)
- Siwalee Rattanapunya
- Department of Public Health, Faculty of Science and Technology, Chiang Mai Rajabhat University, Chiang Mai 50300, Thailand
| | - Aomhatai Deethae
- Department of Biology, Faculty of Science and Technology, Chiang Mai Rajabhat University, Chiang Mai 50300, Thailand;
| | - Susan Woskie
- Department of Public Health, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Pornpimol Kongthip
- Department of Occupational Health and Safety, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand;
| | - Karl R. Matthews
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA;
| |
Collapse
|
3
|
Gaire TN, Scott HM, Sellers L, Nagaraja TG, Volkova VV. Age Dependence of Antimicrobial Resistance Among Fecal Bacteria in Animals: A Scoping Review. Front Vet Sci 2021; 7:622495. [PMID: 33575279 PMCID: PMC7870994 DOI: 10.3389/fvets.2020.622495] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/11/2020] [Indexed: 01/23/2023] Open
Abstract
Introduction: A phenomenon of decreasing antimicrobial resistance (AMR) among fecal bacteria as food animals age has been noted in multiple field studies. We conducted a scoping review to summarize the extent, range, and nature of research activity and the data for the following question: "does AMR among enteric/fecal bacteria predictably shift as animals get older?". Methods: This review followed a scoping review methodology framework. Pertinent literature published up until November 2018 for all animals (except humans) was retrieved using keyword searches in two online databases, namely, PubMed® and the Web of Science™ Core Collection, without filtering publication date, geographic location, or language. Data were extracted from the included studies, summarized, and plotted. Study quality was also assessed using the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) guidelines for all included papers. Results: The publications with detailed relevant data (n = 62) in food animals, poultry, and dogs were identified. These included longitudinal studies (n = 32), cross-sectional studies of different age groups within one food animal production system or small-animal catchment area (n = 16), and experimental or diet trials (n = 14). A decline in host-level prevalence and/or within-host abundance of AMR among fecal bacteria in production beef, dairy cattle, and swine was reported in nearly two-thirds (65%) of the identified studies in different geographic locations from the 1970's to 2018. Mixed results, with AMR abundance among fecal bacteria either increasing or decreasing with age, have been reported in poultry (broiler chicken, layer, and grow-out turkey) and dogs. Conclusions: Quantitative synthesis of the data suggests that the age-dependent AMR phenomenon in cattle and swine is observed irrespective of geographic location and specific production practices. It is unclear whether the phenomenon predates or is related to antimicrobial drug use. However, almost 50% of the identified studies predate recent changes in antimicrobial drug use policy and regulations in food animals in the United States and elsewhere.
Collapse
Affiliation(s)
- Tara N. Gaire
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Harvey Morgan Scott
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Laura Sellers
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - T. G. Nagaraja
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Victoriya V. Volkova
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
4
|
Hudson LK, Constantine-Renna L, Thomas L, Moore C, Qian X, Garman K, Dunn JR, Denes TG. Genomic characterization and phylogenetic analysis of Salmonella enterica serovar Javiana. PeerJ 2020; 8:e10256. [PMID: 33240617 PMCID: PMC7682435 DOI: 10.7717/peerj.10256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/06/2020] [Indexed: 02/01/2023] Open
Abstract
Salmonella enterica serovar Javiana is the fourth most reported serovar of laboratory-confirmed human Salmonella infections in the U.S. and in Tennessee (TN). Although Salmonella ser. Javiana is a common cause of human infection, the majority of cases are sporadic in nature rather than outbreak-associated. To better understand Salmonella ser. Javiana microbial population structure in TN, we completed a phylogenetic analysis of 111 Salmonella ser. Javiana clinical isolates from TN collected from Jan. 2017 to Oct. 2018. We identified mobile genetic elements and genes known to confer antibiotic resistance present in the isolates, and performed a pan-genome-wide association study (pan-GWAS) to compare gene content between clades identified in this study. The population structure of TN Salmonella ser. Javiana clinical isolates consisted of three genetic clades: TN clade I (n = 54), TN clade II (n = 4), and TN clade III (n = 48). Using a 5, 10, and 25 hqSNP distance threshold for cluster identification, nine, 12, and 10 potential epidemiologically-relevant clusters were identified, respectively. The majority of genes that were found to be over-represented in specific clades were located in mobile genetic element (MGE) regions, including genes encoding integrases and phage structures (91.5%). Additionally, a large portion of the over-represented genes from TN clade II (44.9%) were located on an 87.5 kb plasmid containing genes encoding a toxin/antitoxin system (ccdAB). Additionally, we completed phylogenetic analyses of global Salmonella ser. Javiana datasets to gain a broader insight into the population structure of this serovar. We found that the global phylogeny consisted of three major clades (one of which all of the TN isolates belonged to) and two cgMLST eBurstGroups (ceBGs) and that the branch length between the two Salmonella ser. Javiana ceBGs (1,423 allelic differences) was comparable to those from other serovars that have been reported as polyphyletic (929–2,850 allelic differences). This study demonstrates the population structure of TN and global Salmonella ser. Javiana isolates, a clinically important Salmonella serovar and can provide guidance for phylogenetic cluster analyses for public health surveillance and response.
Collapse
Affiliation(s)
- Lauren K Hudson
- Department of Food Science, University of Tennessee, Knoxville, TN, United States of America
| | | | - Linda Thomas
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN, United States of America
| | - Christina Moore
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN, United States of America
| | - Xiaorong Qian
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN, United States of America
| | - Katie Garman
- Tennessee Department of Health, Nashville, TN, United States of America
| | - John R Dunn
- Tennessee Department of Health, Nashville, TN, United States of America
| | - Thomas G Denes
- Department of Food Science, University of Tennessee, Knoxville, TN, United States of America
| |
Collapse
|
5
|
Burkholder KM, Fletcher DH, Gileau L, Kandolo A. Lactic acid bacteria decrease Salmonella enterica Javiana virulence and modulate host inflammation during infection of an intestinal epithelial cell line. Pathog Dis 2020; 77:5480463. [PMID: 31065694 DOI: 10.1093/femspd/ftz025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 04/25/2019] [Indexed: 12/19/2022] Open
Abstract
Salmonella enterica Javiana is a leading cause of severe foodborne Salmonellosis. Despite its emergence as a major foodborne pathogen, little is known of how S. Javiana interacts with intestinal epithelial cells, or of potential methods for ameliorating the bacterial-host interaction. Using cell-based adhesion, invasion and lactate dehydrogenase release assays, we observed an invasive and cytotoxic effect of S. Javiana on intestinal epithelial cells. We assessed the effect of probiotic species of lactic acid bacteria (LAB) on the S. Javiana-host cell interaction, and hypothesized that LAB would reduce S. Javiana infectivity. Salmonella enterica Javiana invasion was significantly impaired in host cells pre-treated with live Lactobacillus acidophilus and Lactobacillus rhamnosus. In addition, pre-exposure of host cells to live L. acidophilus, L. rhamnosus and L. casei reduced S. Javiana-induced cytotoxicity, while heat-killed LAB cultures had no effect on S. Javiana invasion or cytotoxicity. qRT-PCR analysis revealed that S. Javiana exposed to L. acidophilus and L. rhamnosus exhibited reduced virulence gene expression. Moreover, pre-treating host cells with LAB prior to S. Javiana infection reduced host cell production of inflammatory cytokines. Data suggest a potential protective effect of L. acidophilus, L. rhamnosus and L. casei against intestinal epithelial infection and pathogen-induced damage caused by S. Javiana.
Collapse
Affiliation(s)
- Kristin M Burkholder
- University of New England, Department of Biology, 11 Hills Beach Rd, Biddeford, ME, USA 04005
| | - Dylan H Fletcher
- University of New England, Department of Biology, 11 Hills Beach Rd, Biddeford, ME, USA 04005
| | - Lauren Gileau
- University of New England, Department of Biology, 11 Hills Beach Rd, Biddeford, ME, USA 04005
| | - Arnold Kandolo
- University of New England, Department of Biology, 11 Hills Beach Rd, Biddeford, ME, USA 04005
| |
Collapse
|
6
|
Sharma NC, Kumar D, Sarkar A, Chowdhury G, Mukhopadhyay AK, Ramamurthy T. Prevalence of Multidrug Resistant Salmonellae with Increasing Frequency of Salmonella enterica Serovars Kentucky and Virchow among Hospitalized Diarrheal Cases in and around Delhi, India. Jpn J Infect Dis 2019; 73:119-123. [PMID: 31666490 DOI: 10.7883/yoken.jjid.2019.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Non-typhoidal salmonellae (NTS) are a major cause of acute diarrhea with characteristic multidrug resistance (MDR). In a hospital-based study, 81 NTS were isolated and tested for serotypes and antimicrobial resistance (AMR). Salmonella enterica isolates were classified into 7 different typable serovars, however, 19 (23%) isolates remained untypable. The most common serovars were S. Kentucky (48%), and S. Virchow (22%). Most of the NTS isolates displayed resistance to nalidixic acid (NA) (73%), ciprofloxacin (CIP) (48%), ampicillin (AM) and norfloxacin (NOR) (36% each), and gentamicin (CN) (31%). The AMR profiles for CN and NA; and AM, CIP, NA and NOR, were found to be high in S. Virchow (83%) and S. Kentucky (43%), respectively. Analysis of the pulsed-field gel electrophoresis patterns of S. Kentucky revealed 3 clusters. S. Kentucky has clones closely related to become prominent in recent years in Delhi. The AMR appears to be consistent with the change in MDR patterns during 2014-2017. The observed prevalence of S. Kentucky and S. Virchow in large numbers of diarrheal cases is novel. The NTS are mostly resistant to fluoroquinolones, which is the current drug of choice for treating diarrheal cases. MDR is very common among clonally related S. Kentucky.
Collapse
Affiliation(s)
| | - Dhirendra Kumar
- Maharishi Valmiki Infectious Diseases Hospital.,Center for Human Microbial Ecology, Translational Health Science and Technology Institute
| | - Anirban Sarkar
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases
| | - Goutam Chowdhury
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases
| | | | | |
Collapse
|
7
|
Pan H, Paudyal N, Li X, Fang W, Yue M. Multiple Food-Animal-Borne Route in Transmission of Antibiotic-Resistant Salmonella Newport to Humans. Front Microbiol 2018; 9:23. [PMID: 29410657 PMCID: PMC5787089 DOI: 10.3389/fmicb.2018.00023] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/05/2018] [Indexed: 12/21/2022] Open
Abstract
Characterization of transmission routes of Salmonella among various food-animal reservoirs and their antibiogram is crucial for appropriate intervention and medical treatment. Here, we analyzed 3728 Salmonella enterica serovar Newport (S. Newport) isolates collected from various food-animals, retail meats and humans in the United States between 1996 and 2015, based on their minimum inhibitory concentration (MIC) toward 27 antibiotics. Random Forest and Hierarchical Clustering statistic was used to group the isolates according to their MICs. Classification and Regression Tree (CART) analysis was used to identify the appropriate antibiotic and its cut-off value between human- and animal-population. Two distinct populations were revealed based on the MICs of individual strain by both methods, with the animal population having significantly higher MICs which correlates to antibiotic-resistance (AR) phenotype. Only ∼9.7% (267/2763) human isolates could be attributed to food-animal origins. Furthermore, the isolates of animal origin had less diverse antibiogram than human isolates (P < 0.001), suggesting multiple sources involved in human infections. CART identified trimethoprim-sulfamethoxazole to be the best classifier for differentiating the animal and human isolates. Additionally, two typical AR patterns, MDR-Amp and Tet-SDR dominant in bovine- or turkey-population, were identified, indicating that distinct food-animal sources could be involved in human infections. The AR analysis suggested fluoroquinolones (i.e., ciprofloxacin), but not extended-spectrum cephalosporins (i.e., ceftriaxone, cefoxitin), is the adaptive choice for empirical therapy. Antibiotic-resistant S. Newport from humans has multiple origins, with distinct food-animal-borne route contributing to a significant proportion of heterogeneous isolates.
Collapse
Affiliation(s)
- Hang Pan
- CATG Microbiology & Food Safety Laboratory, Institute of Preventive Veterinary Medicine, College of Animal Sciences of Zhejiang University, Hangzhou, China
| | - Narayan Paudyal
- CATG Microbiology & Food Safety Laboratory, Institute of Preventive Veterinary Medicine, College of Animal Sciences of Zhejiang University, Hangzhou, China
| | - Xiaoliang Li
- CATG Microbiology & Food Safety Laboratory, Institute of Preventive Veterinary Medicine, College of Animal Sciences of Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Weihuan Fang
- CATG Microbiology & Food Safety Laboratory, Institute of Preventive Veterinary Medicine, College of Animal Sciences of Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Min Yue
- CATG Microbiology & Food Safety Laboratory, Institute of Preventive Veterinary Medicine, College of Animal Sciences of Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| |
Collapse
|
8
|
Shah DH, Paul NC, Sischo WC, Crespo R, Guard J. Population dynamics and antimicrobial resistance of the most prevalent poultry-associated Salmonella serotypes. Poult Sci 2017; 96:687-702. [PMID: 27665007 DOI: 10.3382/ps/pew342] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/16/2016] [Indexed: 11/20/2022] Open
Abstract
Salmonella spp. is the most predominant bacterial cause of foodborne gastroenteritis in humans. Due to the risk of human infection associated with poultry products and the prevalence of antimicrobial resistance, Salmonella also poses a significant challenge to commercial poultry production. During the last decade (2002 to 2012), the 12 most prevalent poultry-associated Salmonella serotypes (MPPSTs) were frequently and consistently isolated from poultry products in the United States. These MPPSTs and their percent prevalence in poultry products include Kentucky (4%), Enteritidis (2%) Heidelberg (2%), Typhimurium (2%), S. I 4,[5],12:i:- (0.31%), Montevideo (0.20%), Infantis (0.16%) Schwarzengrund (0.15%), Hadar (0.15%), Mbandaka (0.13%), Thompson (0.12%), and Senftenberg (0.04%). All MPPSTs except Kentucky are among the top 30 clinically significant serotypes that cause human illnesses in the United States. However with the exception of a few widely studied serotypes such as S. Enteritidis and Typhimurium, the ecology and epidemiology of the majority of MPPSTs still remain poorly investigated. Published data from the United States suggests that MPPSTs such as Heidelberg, Typhimurium, Kentucky, and Sentfenberg are more likely to be multi-drug resistant (MDR, ≥3 antimicobial classes) whereas Enteritidis, Montevideo, Schwarzengrund, Hadar, Infantis, Thompson, and Mbandaka are generally pan-susceptible or display resistance to fewer antimicobials. In contrast, the majority of MPPSTs isolated globally have been reported to display MDR phenotype. There also appears to be an international spread of a few MDR serotypes including Kentucky, Schwarzengrund, Hadar, Thomson, Sentfenberg, and Enteritidis, which may pose significant challenges to the public health. The current knowledge gaps on the ecology, epidemiology, and antimicrobial resistance of MPPSTs are discussed.
Collapse
Affiliation(s)
| | | | - Willium C Sischo
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, WA 99164-7040
| | - Rocio Crespo
- Department of Veterinary Microbiology and Pathology
| | - Jean Guard
- Egg Quality and Safety Research Unit, United States Department of Agriculture, Atlanta, GA 30605, USA
| |
Collapse
|
9
|
Jung Y, Matthews KR. Potential transfer of extended spectrum β-lactamase encoding gene, blashv18 gene, between Klebsiella pneumoniae in raw foods. Food Microbiol 2016; 60:39-48. [PMID: 27554144 DOI: 10.1016/j.fm.2016.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 02/06/2023]
Abstract
This study investigated the transfer frequency of the extended-spectrum β-lactamase-encoding gene (blaSHV18) among Klebsiella pneumoniae in tryptic soy broth (TSB), pasteurized milk, unpasteurized milk, alfalfa sprouts and chopped lettuce at defined temperatures. All transconjugants were characterized phenotypically and genotypically. KP04(ΔKM) and KP08(ΔKM) isolated from seed sprouts and KP342 were used as recipients in mating experiments with K. pneumoniae ATCC 700603 serving as the donor. In mating experiments, no transconjugants were detected at 4 °C in liquid media or chopped lettuce, but detected in all media tested at 15 °C, 24 °C, and 37 °C. At 24 °C, the transfer of blaSHV18 gene occurred more frequently in alfalfa sprouts (5.15E-04 transconjugants per recipient) and chopped lettuce (3.85E-05) than liquid media (1.08E-05). On chopped lettuce, transconjugants were not detected at day 1 post-mating at 15 °C, but observed on day 2 (1.43E-05). Transconjugants carried the blaSHV18 gene transferred from the donor and the virulence gene harbored by recipient. More importantly, a class 1 integrase gene and resistance to tetracycline, trimethoprim/sulfamethoxazole were co-transferred during mating. These quantitative results suggest that fresh produce exposed to temperature abuse may serve as a competent vehicle for the spread of gene encoding for antibiotic resistance, having a potential negative impact on human health.
Collapse
Affiliation(s)
- Yangjin Jung
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, United States
| | - Karl R Matthews
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, United States.
| |
Collapse
|
10
|
Haley BJ, Kim SW, Pettengill J, Luo Y, Karns JS, Van Kessel JAS. Genomic and Evolutionary Analysis of Two Salmonella enterica Serovar Kentucky Sequence Types Isolated from Bovine and Poultry Sources in North America. PLoS One 2016; 11:e0161225. [PMID: 27695032 PMCID: PMC5047448 DOI: 10.1371/journal.pone.0161225] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 08/02/2016] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica subsp. enterica serovar Kentucky is frequently isolated from healthy poultry and dairy cows and is occasionally isolated from people with clinical disease. A genomic analysis of 119 isolates collected in the United States from dairy cows, ground beef, poultry and poultry products, and human clinical cases was conducted. Results of the analysis demonstrated that the majority of poultry and bovine-associated S. Kentucky were sequence type (ST) 152. Several bovine-associated (n = 3) and food product isolates (n = 3) collected from the United States and the majority of human clinical isolates were ST198, a sequence type that is frequently isolated from poultry and occasionally from human clinical cases in Northern Africa, Europe and Southeast Asia. A phylogenetic analysis indicated that both STs are more closely related to other Salmonella serovars than they are to each other. Additionally, there was strong evidence of an evolutionary divergence between the poultry-associated and bovine-associated ST152 isolates that was due to polymorphisms in four core genome genes. The ST198 isolates recovered from dairy farms in the United States were phylogenetically distinct from those collected from human clinical cases with 66 core genome SNPs differentiating the two groups, but more isolates are needed to determine the significance of this distinction. Identification of S. Kentucky ST198 from dairy animals in the United States suggests that the presence of this pathogen should be monitored in food-producing animals.
Collapse
Affiliation(s)
- Bradd J. Haley
- Environmental Microbial and Food Safety Laboratory, Beltsville Area Research Center, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD, United States of America
| | - Seon Woo Kim
- Environmental Microbial and Food Safety Laboratory, Beltsville Area Research Center, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD, United States of America
| | - James Pettengill
- Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States of America
| | - Yan Luo
- Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States of America
| | - Jeffrey S. Karns
- Environmental Microbial and Food Safety Laboratory, Beltsville Area Research Center, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD, United States of America
| | - Jo Ann S. Van Kessel
- Environmental Microbial and Food Safety Laboratory, Beltsville Area Research Center, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD, United States of America
- * E-mail:
| |
Collapse
|
11
|
Sanad YM, Johnson K, Park SH, Han J, Deck J, Foley SL, Kenney B, Ricke S, Nayak R. Molecular Characterization ofSalmonella entericaSerovars Isolated from a Turkey Production Facility in the Absence of Selective Antimicrobial Pressure. Foodborne Pathog Dis 2016; 13:80-7. [DOI: 10.1089/fpd.2015.2002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Yasser M. Sanad
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Kelly Johnson
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Si Hong Park
- Center for Food Safety and Department of Food Science, University of Arkansas, Fayetteville, Arkansas
| | - Jing Han
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Joanna Deck
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Steven L. Foley
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Brett Kenney
- Department of Animal and Nutritional Science, West Virginia University, Morgantown, West Virginia
| | - Steven Ricke
- Center for Food Safety and Department of Food Science, University of Arkansas, Fayetteville, Arkansas
| | - Rajesh Nayak
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| |
Collapse
|
12
|
Kavaz Yüksel A, Yüksel M. Determination of Certain Microbiological Quality Characteristics of Ice Cream, Detection of S
almonella
by Conventional and Immunomagnetic Separation Methods and Antibiotic Susceptibility of S
almonella
spp. Isolates. J Food Saf 2015. [DOI: 10.1111/jfs.12186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Arzu Kavaz Yüksel
- Department of Food Engineering; Engineering Faculty; Adıyaman University; Adıyaman 02040 Turkey
| | - Mehmet Yüksel
- Department of Food Engineering; Faculty of Agricultural; Atatürk University; Erzurum Turkey
| |
Collapse
|
13
|
Scientific Opinion on an estimation of the public health impact of setting a new target for the reduction ofSalmonellain turkeys. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2616] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
14
|
Van TTH, Nguyen HNK, Smooker PM, Coloe PJ. The antibiotic resistance characteristics of non-typhoidal Salmonella enterica isolated from food-producing animals, retail meat and humans in South East Asia. Int J Food Microbiol 2012; 154:98-106. [PMID: 22265849 DOI: 10.1016/j.ijfoodmicro.2011.12.032] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 12/16/2011] [Accepted: 12/24/2011] [Indexed: 11/26/2022]
Abstract
Antimicrobial resistance is a global problem. It is most prevalent in developing countries where infectious diseases remain common, the use of antibiotics in humans and animals is widespread, and the replacement of older antibiotics with new generation antibiotics is not easy due to the high cost. Information on antibiotic resistance phenotypes and genotypes of Salmonella spp. in food animals and humans in different countries and geographic regions is necessary to combat the spread of resistance. This will improve the understanding of antibiotic resistance epidemiology, tracing of new emerging pathogens, assisting in disease treatment, and enhancing prudent use of antibiotics. However, the extent of antibiotic resistance in food-borne pathogens and humans in many developing countries remains unknown. The goal of this review is to discuss the current state of antibiotic resistance of non-typhoid Salmonella spp. in food-producing animals, retail meat and humans from South East Asia. It is focused on resistance characteristics of traditional and "critically important" antibiotics in this region, and the emergence of multidrug resistant strains and genetic elements that contribute to the development of multidrug resistance, including integrons and the Salmonella Genomic Island (SGI).
Collapse
Affiliation(s)
- Thi Thu Hao Van
- School of Applied Sciences, RMIT University, Bundoora West Campus, Bundoora, Victoria 3083, Australia
| | | | | | | |
Collapse
|
15
|
Snow LC, Davies RH, Christiansen KH, Carrique-Mas JJ, Cook AJC, Evans SJ. Survey of Salmonella prevalence on commercial turkey breeding and fattening farms in the UK in 2006 to 2007. Vet Rec 2011; 169:493. [PMID: 21891786 DOI: 10.1136/vr.d4408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A total of 29 breeding turkey holdings and 317 fattening turkey holdings were sampled between October 2006 and September 2007 in order to establish the baseline prevalence of Salmonella in turkeys in the UK. The weighted holding level Salmonella prevalence was found to be 20.1 per cent (95 per cent confidence interval [CI] 8.6 to 40.3 per cent) in breeding turkeys and 37.7 per cent (95 per cent CI 33.4 to 42.3 per cent) in fattening turkeys. For breeding turkeys, a weighted flock-level prevalence, as more than one flock per holding was sampled, was estimated at 7.1 per cent (95 per cent CI 3.2 to 14.8 per cent). A total of 13 different serovars were identified in the survey. The most frequent serovar in both turkey flock classes was Salmonella Kottbus, which was found on two breeding holdings and 63 of the fattening holdings giving weighted prevalences of 10.4 per cent (95 per cent CI 2.6 to 34.1 per cent) and 23.0 per cent (95 per cent CI 19.3 to 27.3 per cent), respectively. On breeding holdings, a single isolate of Salmonella Typhimurium, identified as DT12 (weighted prevalence 3.5 per cent [95 per cent CI 0.7 to 15.8 per cent] [holding], 0.7 per cent [95 per cent CI 0.1 to 3.7 per cent] [flock)], was found. On fattening holdings, there were 55 isolates of S Typhimurium from 16 holdings, giving a weighted prevalence of this serovar of 5.4 per cent (95 per cent CI 3.6 to 8.0 per cent). There were no isolates of Salmonella serovars Enteritidis, Hadar, Infantis or Virchow.
Collapse
Affiliation(s)
- L C Snow
- Animal Health and Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK.
| | | | | | | | | | | |
Collapse
|
16
|
Iossifidou EG, Abrahim A, Soultos ND, Triantafillou EA, Koidis PA. Antimicrobial resistance profiles in Salmonella spp. and Escherichia coli isolates from turkey samples in Northern Greece. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0299-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
17
|
Stepan RM, Sherwood JS, Petermann SR, Logue CM. Molecular and comparative analysis of Salmonella enterica Senftenberg from humans and animals using PFGE, MLST and NARMS. BMC Microbiol 2011; 11:153. [PMID: 21708021 PMCID: PMC3224216 DOI: 10.1186/1471-2180-11-153] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 06/27/2011] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Salmonella species are recognized worldwide as a significant cause of human and animal disease. In this study the molecular profiles and characteristics of Salmonella enterica Senftenberg isolated from human cases of illness and those recovered from healthy or diagnostic cases in animals were assessed. Included in the study was a comparison with our own sequenced strain of S. Senfteberg recovered from production turkeys in North Dakota. Isolates examined in this study were subjected to antimicrobial susceptibility profiling using the National Antimicrobial Resistance Monitoring System (NARMS) panel which tested susceptibility to 15 different antimicrobial agents. The molecular profiles of all isolates were determined using Pulsed Field Gel Electrophoresis (PFGE) and the sequence types of the strains were obtained using Multi-Locus Sequence Type (MLST) analysis based on amplification and sequence interrogation of seven housekeeping genes (aroC, dnaN, hemD, hisD, purE, sucA, and thrA). PFGE data was input into BioNumerics analysis software to generate a dendrogram of relatedness among the strains. RESULTS The study found 93 profiles among 98 S. Senftenberg isolates tested and there were primarily two sequence types associated with humans and animals (ST185 and ST14) with overlap observed in all host types suggesting that the distribution of S. Senftenberg sequence types is not host dependent. Antimicrobial resistance was observed among the animal strains, however no resistance was detected in human isolates suggesting that animal husbandry has a significant influence on the selection and promotion of antimicrobial resistance. CONCLUSION The data demonstrates the circulation of at least two strain types in both animal and human health suggesting that S. Senftenberg is relatively homogeneous in its distribution. The data generated in this study could be used towards defining a pathotype for this serovar.
Collapse
Affiliation(s)
- Ryan M Stepan
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | | | | | | |
Collapse
|
18
|
Johnson TJ, Thorsness JL, Anderson CP, Lynne AM, Foley SL, Han J, Fricke WF, McDermott PF, White DG, Khatri M, Stell AL, Flores C, Singer RS. Horizontal gene transfer of a ColV plasmid has resulted in a dominant avian clonal type of Salmonella enterica serovar Kentucky. PLoS One 2010; 5:e15524. [PMID: 21203520 PMCID: PMC3008734 DOI: 10.1371/journal.pone.0015524] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 10/07/2010] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica continues to be a significant cause of foodborne gastrointestinal illness in humans. A wide variety of Salmonella serovars have been isolated from production birds and from retail poultry meat. Recently, though, S. enterica subsp. enterica serovar Kentucky has emerged as one of the prominent Salmonella serovars isolated from broiler chickens. Recent work suggests that its emergence apparently coincides with its acquisition of a ColV virulence plasmid. In the present study, we examined 902 Salmonella isolates belonging to 59 different serovars for the presence of this plasmid. Of the serovars examined, the ColV plasmid was found only among isolates belonging to the serovars Kentucky (72.9%), Typhimurium (15.0%) and Heidelberg (1.7%). We demonstrated that a single PFGE clonal type of S. Kentucky harbors this plasmid, and acquisition of this plasmid by S. Kentucky significantly increased its ability to colonize the chicken cecum and cause extraintestinal disease. Comparison of the completed sequences of three ColV plasmids from S. Kentucky isolated from different geographical locales, timepoints and sources revealed a nearly identical genetic structure with few single nucleotide changes or insertions/deletions. Overall, it appears that the ColV plasmid was recently acquired by a single clonal type S. Kentucky and confers to its host enhanced colonization and fitness capabilities. Thus, the potential for horizontal gene transfer of virulence and fitness factors to Salmonella from other enteric bacteria exists in poultry, representing a potential human health hazard.
Collapse
Affiliation(s)
- Timothy J Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St Paul, Minnesota, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Iwabuchi E, Maruyama N, Hara A, Nishimura M, Muramatsu M, Ochiai T, Hirai K. Nationwide survey of salmonella prevalence in environmental dust from layer farms in Japan. J Food Prot 2010; 73:1993-2000. [PMID: 21219710 DOI: 10.4315/0362-028x-73.11.1993] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A nationwide survey was conducted to determine Salmonella prevalence in airborne dust from layer farms. Of the 4,090 layer farms in Japan, 203 were surveyed and 48 (23.6%) of these were positive for Salmonella. Salmonella isolation rates were higher in the eastern (24.3%), central (25.6%), western (23.9%), and southern (27.5%) prefectures than they were in the northern (13.3%) prefecture. We recovered 380 Salmonella isolates and identified 34 different Salmonella serovars. Salmonella Infantis was the most prevalent serovar (42 [11.1%] of 380), followed by Salmonella Agona (39 [10.3%] of 380), Salmonella Mbandaka (37 [9.7%] of 380), Salmonella Cerro (32 [8.4%] of 380), Salmonella Thompson (29 [7.6%] of 380), and Salmonella Braenderup (27 [7.1%] of 380). Of the 380 isolates, 273 (71.8%) were resistant to more than one antibiotic. Salmonella Infantis (41 [97.6%] of 42), Salmonella Agona (38 [97.4%] of 39), and Salmonella Mbandaka (34 [91.9%] of 37) showed the highest resistance rates. We found 18 different resistance patterns and the most common (179 [47.1%] of 273) was resistant to dihydrostreptomycin. One of the 13 Salmonella Hadar isolates was resistant to eight antibiotics. To investigate characteristics of Salmonella Agona, Salmonella Infantis, and Salmonella Mbandaka isolates across different prefectures, we performed pulsed-field gel electrophoresis by using XbaI and BlnI. The Salmonella Agona and Salmonella Mbandaka dendrograms were grouped into seven clusters, with 80 and 70% similarity, respectively. Because the Salmonella Infantis dendrogram showed low similarity, there is a possibility of genetic diffusion of this serovar across Japan. This report is the first to describe Salmonella contamination in airborne dust from layer farms in Japan. Our findings should be useful for future Salmonella infection monitoring and control.
Collapse
Affiliation(s)
- Eriko Iwabuchi
- Department of Nutrition, School of Nursing and Nutrition, Tenshi College, Higashi-ku, Sapporo, Hokkaido 065-0013, Japan.
| | | | | | | | | | | | | |
Collapse
|
20
|
Stenske KA, Bemis DA, Gillespie BE, D'Souza DH, Oliver SP, Draughon FA, Matteson KJ, Bartges JW. Comparison of clonal relatedness and antimicrobial susceptibility of fecal Escherichia coli from healthy dogs and their owners. Am J Vet Res 2010; 70:1108-16. [PMID: 19719426 DOI: 10.2460/ajvr.70.9.1108] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine prevalence of within-household sharing of fecal Escherichia coli between dogs and their owners on the basis of pulsed-field gel electrophoresis (PFGE), compare antimicrobial susceptibility between isolates from dogs and their owners, and evaluate epidemiologic features of cross-species sharing by use of a questionnaire. SAMPLE POPULATION 61 healthy dog-owner pairs and 30 healthy control humans. PROCEDURES 3 fecal E coli colonies were isolated from each participant; PFGE profiles were used to establish relatedness among bacterial isolates. Susceptibility to 17 antimicrobials was determined via disk diffusion. A questionnaire was used to evaluate signalment, previous antimicrobial therapy, hygiene, and relationship with dog. RESULTS A wide array of PFGE profiles was observed in E coli isolates from all participants. Within-household sharing occurred with 9.8% prevalence, and across-household sharing occurred with 0.3% prevalence. No behaviors were associated with increased clonal sharing between dog and owner. No differences were found in susceptibility results between dog-owner pairs. Control isolates were more likely than canine isolates to be resistant to ampicillin and trimethoprim-sulfamethoxazole. Owners and control humans carried more multdrug-resistant E coli than did dogs. CONCLUSIONS AND CLINICAL RELEVANCE Within-household sharing of E coli was detected more commonly than across-household sharing, but both direct contact and environmental reservoirs may be routes of cross-species sharing of bacteria and genes for resistance. Cross-species bacterial sharing is a potential public health concern, and good hygiene is recommended.
Collapse
Affiliation(s)
- Katherine A Stenske
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Papadopoulou C, Davies RH, Carrique-Mas JJ, Evans SJ. Salmonellaserovars and their antimicrobial resistance in British turkey flocks in 1995 to 2006. Avian Pathol 2009; 38:349-57. [DOI: 10.1080/03079450903183678] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Oloya J, Doetkott D, Khaitsa ML. Antimicrobial drug resistance and molecular characterization of Salmonella isolated from domestic animals, humans, and meat products. Foodborne Pathog Dis 2009; 6:273-84. [PMID: 19341316 DOI: 10.1089/fpd.2008.0134] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES 1) To characterize and determine genotypic relatedness of Salmonella serovars commonly isolated from domestic animals and humans in North Dakota, and 2) to assess their role in transferring antimicrobial resistance (AMR) to humans. MATERIALS AND METHODS A total of 434 Salmonella isolates obtained from 1) feces of apparently healthy feedlot, range, and dairy cattle in North Dakota; 2) clinical samples from sick or dead animals submitted to North Dakota State University-Veterinary Diagnostic Laboratory (2000-2005); 3) previous meat product surveillance studies in North Dakota; and 4) 179 samples from human patients in North Dakota (2000-2005) by the North Dakota Department of Health were studied. The isolates were initially serotyped and later genotyped by pulsed-field gel electrophoresis (PFGE) to investigate their relatedness. The National Antimicrobial Resistance Monitoring Systems panel was used to compare AMR profiles of animal and human isolates to assess a possible role of domestic animals in transfer of AMR to humans. RESULTS Salmonella Typhimurium was the predominant serotype in both humans (13.4%) and domestic animals (34.3%), followed by Newport in animals (2.6%) and human (3.9%). Salmonella Arizona (0.7%), Salmonella Give (0.9%), and Salmonella Muenster (3.5%) were isolated from sick or dead animals. PFGE results confirmed occurrence of similar Salmonella genotypes in both domestic animals and humans. AMR profiles showed that most animal strains were multidrug resistant. A single human isolate had PFGE and multidrug resistance profiles similar to a major cattle genotype, suggesting a possible AMR transmission from cattle to humans. CONCLUSION AND APPLICATION: Similar Salmonella genotypes were infecting domestic animals and humans in North Dakota. The AMR levels were higher in domestic animal isolates than in humans, implying that the occurrence of AMR in animal isolates may not translate directly into AMR in human isolates in North Dakota. This is helpful in determining future policies regarding antimicrobial drug use in domestic animals and humans.
Collapse
Affiliation(s)
- J Oloya
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, USA
| | | | | |
Collapse
|
23
|
Joerger RD, Sartori CA, Kniel KE. Comparison of Genetic and Physiological Properties ofSalmonella entericaIsolates from Chickens Reveals One Major Difference Between Serovar Kentucky and Other Serovars: Response to Acid. Foodborne Pathog Dis 2009; 6:503-12. [DOI: 10.1089/fpd.2008.0144] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rolf D. Joerger
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware
| | - Casey A. Sartori
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware
| | - Kalmia E. Kniel
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware
| |
Collapse
|
24
|
Mueller-Doblies D, Sayers AR, Carrique-Mas JJ, Davies RH. Comparison of sampling methods to detect Salmonella infection of turkey flocks. J Appl Microbiol 2009; 107:635-45. [PMID: 19302307 DOI: 10.1111/j.1365-2672.2009.04230.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To compare the efficiency of various sampling methods for detection of Salmonella in turkey flocks. METHODS AND RESULTS In a field study that compared various sampling methods one pair of boot swabs taken from the whole turkey house provided suitably sensitive results for fattening and rearing flocks and was no less sensitive than two pairs, each from half the house, tested as a pooled sample. The sensitivity was further enhanced by adding a dust sample. The dust sample appeared to be particularly useful in flocks with a low prevalence, especially in breeding flocks, and was more sensitive than a method which used five pairs of boot swabs per flock. Combined incubation of a boot swab and a dust sample showed no interference between the two sample types and a maximum sensitivity of detection. Litter samples and commercial sponge drag swabs provided a lower level of detection. CONCLUSIONS A single pair of boot swabs taken from the whole house is recommended for routine sampling of commercial rearing or fattening flocks. An additional dust sample could be added to increase detection in flocks with a low prevalence or in breeding flocks, but adding an additional pair of boot swabs would not increase detection compared with a single pair. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrates that significant efficiencies can be made in sampling programmes for detection of Salmonella in turkey flocks without detracting from the sensitivity. Similar studies are recommended for other poultry sectors, particularly in chicken breeding flocks.
Collapse
Affiliation(s)
- D Mueller-Doblies
- Food and Environmental Safety Department, Veterinary Laboratories Agency Weybridge, New Haw, Addlestone, Surrey, UK
| | | | | | | |
Collapse
|
25
|
Abstract
AbstractThis paper reviews the present state of antimicrobial resistance (AMR) in the zoonotic bacteria Salmonella, Campylobacter jejuni and Campylobacter coli, and in Escherichia coli from chickens and turkeys. For Salmonella, the frequencies and patterns of AMR vary depending on time, region, serovar, the particular farm, layers versus broilers, and the antimicrobial agent. There is usually a higher frequency of AMR in Salmonella from turkeys compared with Salmonella from chickens. Clonal and horizontal transmission of AMR occur and there is concern about the spread of transmissible plasmids that encode extended spectrum cephalosporinases. Resistance to fluoroquinolones is generally low. For Campylobacter, resistance to tetracycline is usually at moderate to high frequency, resistance to quinolones/fluoroquinolones varies from low to high, and resistance to macrolides is usually low. There are high levels of fluoroquinolone resistance in some countries. Avian pathogenic E. coli are often highly resistant, especially to tetracycline, streptomycin, and sulfonamides. Plasmid-mediated resistance is common. High levels of resistance to ciprofloxacin have been reported from China. Commensal E. coli from poultry have similar patterns of resistance but at lower frequencies. Integron associated resistance occurs commonly in Salmonella and E. coli but has not been detected in Campylobacter.
Collapse
|
26
|
Antimicrobial resistance in Salmonella enterica serovar Heidelberg isolates from retail meats, including poultry, from 2002 to 2006. Appl Environ Microbiol 2008; 74:6656-62. [PMID: 18757574 DOI: 10.1128/aem.01249-08] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Heidelberg frequently causes food-borne illness in humans. There are few data on the prevalence, antimicrobial susceptibility, and genetic diversity of Salmonella serovar Heidelberg isolates in retail meats. We compared the prevalences of Salmonella serovar Heidelberg in a sampling of 20,295 meats, including chicken breast (n = 5,075), ground turkey (n = 5,044), ground beef (n = 5,100), and pork chops (n = 5,076), collected during 2002 to 2006. Isolates were analyzed for antimicrobial susceptibility and compared genetically using pulsed-field gel electrophoresis (PFGE) and PCR for the bla(CMY) gene. A total of 298 Salmonella serovar Heidelberg isolates were recovered, representing 21.6% of all Salmonella serovars from retail meats. One hundred seventy-eight (59.7%) were from ground turkey, 110 (36.9%) were from chicken breast, and 10 (3.4%) were from pork chops; none was found in ground beef. One hundred ninety-eight isolates (66.4%) were resistant to at least one compound, and 49 (16.4%) were resistant to at least five compounds. Six isolates (2.0%), all from ground turkey, were resistant to at least nine antimicrobials. The highest resistance in poultry isolates was to tetracycline (39.9%), followed by streptomycin (37.8%), sulfamethoxazole (27.7%), gentamicin (25.7%), kanamycin (21.5%), ampicillin (19.8%), amoxicillin-clavulanic acid (10.4%), and ceftiofur (9.0%). All isolates were susceptible to ceftriaxone and ciprofloxacin. All ceftiofur-resistant strains carried bla(CMY). PFGE using XbaI and BlnI showed that certain clones were widely dispersed in different types of meats and meat brands from different store chains in all five sampling years. These data indicate that Salmonella serovar Heidelberg is a common serovar in retail poultry meats and includes widespread clones of multidrug-resistant strains.
Collapse
|
27
|
Abstract
The increased serum survival gene iss has long been recognized for its role in extraintestinal pathogenic Escherichia coli (ExPEC) virulence. iss has been identified as a distinguishing trait of avian ExPEC but not of human ExPEC. This gene has been localized to large virulence plasmids and shares strong similarities with the bor gene from bacteriophage lambda. Here, we demonstrate that three alleles of iss occur among E. coli isolates that appear to have evolved from a common lambda bor precursor. In addition to the occurrence of iss on the ColV/BM virulence plasmids, at least two iss alleles occur within the E. coli chromosome. One of these alleles (designated type 3) was found to occur in the genomes of all currently sequenced ExPEC strains on a similar prophage element that also harbors the Sit iron and manganese transport system. When the prevalence of the three iss types was examined among 487 E. coli isolates, the iss type 3 gene was found to occur at a high frequency among ExPEC isolates, irrespective of the host source. The plasmid-borne iss allele (designated type 1) was highly prevalent among avian pathogenic E. coli and neonatal meningitis-associated E. coli isolates but not among uropathogenic E. coli isolates. This study demonstrates the evolution of iss in E. coli and provides an additional tool for discriminating among E. coli pathotypes through the differentiation of the three iss allele types and bor.
Collapse
|