1
|
High pressure processing of raw meat with essential oils-microbial survival, meat quality, and models: A review. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108529] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
2
|
Lopez CM, Dallolio G, Bonilauri P, Rebecchi A. Strategies for Nitrite Replacement in Fermented Sausages and Effect of High Pressure Processing against Salmonella spp. and Listeria innocua. Foods 2021; 10:2617. [PMID: 34828893 PMCID: PMC8617797 DOI: 10.3390/foods10112617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
The development of nitrite-free meat products is a current industrial concern. Many efforts have been attempted to replace the nitrite effect in cured meats colour formation and pathogens control. Our previous work evidenced that lactic acid and a cold ripening were the best hurdle technologies for nitrite-free fermented sausages from metabolomics. In the first part of this work, we investigated the effect of lactic acid compared with both two alternative additives (glucono-D-lactone and a mix of sodium di-acetate/sodium lactate) and with low-nitrite sausages, all of them following either cold or traditional ripening. For this purpose, microbiological analysis, pH, water activity (aw), and a sensory study were performed. All nitrite-free sausages (cold or traditional ripened) showed quality and safety traits similar to low-nitrite traditionally ripened ones used as control. In addition, sensory study revealed that sausages with lactic acid were the most preferred cold ripened samples, supporting that this is an optimal strategy for the production of nitrite-free sausages. We selected this product for further studies. Indeed, in the second part, we evaluated the impact of ripening, and other hurdle technologies as High Pressure Processing (HPP) and under-vacuum storage against Listeria innocua and Salmonella spp. by a challenge test. Maximal declines were obtained for ripening along with HPP (i.e., 4.74 and 3.83 log CFU/g for L. innocua and Salmonella spp., respectively), suggesting that HPP might guarantee nitrite-free sausages safety. Although the quality of raw materials remains essential, these hurdle strategies largely contributed to nitrite-free sausages safety, offering a promising tool for the meat industry.
Collapse
Affiliation(s)
- Constanza Maria Lopez
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Bissolati 72/74, 26100 Cremona, Italy; (C.M.L.); (G.D.)
| | - Giuliano Dallolio
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Bissolati 72/74, 26100 Cremona, Italy; (C.M.L.); (G.D.)
| | - Paolo Bonilauri
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia-Romagna (IZSLER), Via Bianchi 9, 25124 Brescia, Italy;
| | - Annalisa Rebecchi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Bissolati 72/74, 26100 Cremona, Italy; (C.M.L.); (G.D.)
| |
Collapse
|
3
|
Barroug S, Chaple S, Bourke P. Combination of Natural Compounds With Novel Non-thermal Technologies for Poultry Products: A Review. Front Nutr 2021; 8:628723. [PMID: 34169086 PMCID: PMC8217606 DOI: 10.3389/fnut.2021.628723] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Ensuring safe, fresh, and healthy food across the shelf life of a commodity is an ongoing challenge, with the driver to minimize chemical additives and their residues in the food processing chain. High-value fresh protein products such as poultry meat are very susceptible to spoilage due to oxidation and bacterial contamination. The combination of non-thermal processing interventions with nature-based alternatives is emerging as a useful tool for potential adoption for safe poultry meat products. Natural compounds are produced by living organisms that are extracted from nature and can be used as antioxidant, antimicrobial, and bioactive agents and are often employed for other existing purposes in food systems. Non-thermal technology interventions such as high-pressure processing, pulsed electric field, ultrasound, irradiation, and cold plasma technology are gaining increasing importance due to the advantages of retaining low temperatures, nutrition profiles, and short treatment times. The non-thermal unit process can act as an initial obstacle promoting the reduction of microflora, while natural compounds can provide an active obstacle either in addition to processing or during storage time to maintain quality and inhibit and control growth of residual contaminants. This review presents the application of natural compounds along with emerging non-thermal technologies to address risks in fresh poultry meat.
Collapse
Affiliation(s)
- Soukaina Barroug
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - Sonal Chaple
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - Paula Bourke
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
- School of Biological Sciences, Institute Global Food Security, The Queens University Belfast, Belfast, United Kingdom
| |
Collapse
|
4
|
Li H, Sun X, Liao X, Gänzle M. Control of pathogenic and spoilage bacteria in meat and meat products by high pressure: Challenges and future perspectives. Compr Rev Food Sci Food Saf 2020; 19:3476-3500. [PMID: 33337070 DOI: 10.1111/1541-4337.12617] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/10/2020] [Accepted: 07/19/2020] [Indexed: 01/18/2023]
Abstract
High-pressure processing is among the most widely used nonthermal intervention to reduce pathogenic and spoilage bacteria in meat and meat products. However, resistance of pathogenic bacteria strains in meats at the current maximum commercial equipment of 600 MPa questions the ability of inactivation by its application in meats. Pathogens including Escherichia coli, Listeria, and Salmonelle, and spoilage microbiota including lactic acid bacteria dominate in raw meat, ready-to-eat, and packaged meat products. Improved understanding on the mechanisms of the pressure resistance is needed for optimizing the conditions of pressure treatment to effectively decontaminate harmful bacteria. Effective control of the pressure-resistant pathogens and spoilage organisms in meats can be realized by the combination of high pressure with application of mild temperature and/or other hurdles including antimicrobial agents and/or competitive microbiota. This review summarized applications, mechanisms, and challenges of high pressure on meats from the perspective of microbiology, which are important for improving the understanding and optimizing the conditions of pressure treatment in the future.
Collapse
Affiliation(s)
- Hui Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohong Sun
- College of Food and Biological Engineering, Qiqihar University, Qiqihar, Heilongjiang, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Michael Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| |
Collapse
|
5
|
Argyri AA, Papadopoulou OS, Sourri P, Chorianopoulos N, Tassou CC. Quality and Safety of Fresh Chicken Fillets after High Pressure Processing: Survival of Indigenous Brochothrix thermosphacta and Inoculated Listeria monocytogenes. Microorganisms 2019; 7:microorganisms7110520. [PMID: 31684053 PMCID: PMC6921100 DOI: 10.3390/microorganisms7110520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 11/16/2022] Open
Abstract
The effect of high-pressure processing (HPP) on Listeriamonocytogenes, the indigenous microbiota and the shelf-life of chicken fillets was evaluated. Chicken fillets were inoculated with different inocula (2, 4, and 6 log CFU/g) of a 4-strain cocktail of L. monocytogenes, vacuum-packed, processed or not with HPP (500 MPa/10 min) and stored at 4 °C and 12 °C. Total viable counts (TVC), L. monocytogenes, Pseudomonas spp., Brochothrix thermosphacta, lactic acid bacteria (LAB), Enterobacteriaceae and yeasts/molds were determined along with the pH and sensory analysis. Pulsed-field gel electrophoresis (PFGE) was used to monitor the succession of indigenous Brochothrix isolates and inoculated Listeria strains. The main spoilage microorganism of HPP-treated samples was B. thermosphacta detected after 3 days of storage. HPP decreased the inoculated Listeria population. For the low and medium inoculum case it was detected throughout the shelf-life at both temperatures in populations near to the detection limit or after enrichment. In the high inoculum case, the pathogen decreased ≥5-log cycles after HPP, while increased subsequently to 1.6 and 4.5 log CFU/g at 4 °C and 12 °C, respectively, by the end of the shelf-life. PFGE showed that Brochothrix isolates exhibited a significant diversity among control samples, whereas this was limited for the HPP-treated samples. The survival and distribution of different Listeria strains depended on the initial inoculum and storage temperature. In conclusion, HPP increased the shelf-life (for 5 and 4 days, at 4 °C and 12 °C, respectively) and enhanced the safety of chicken meat.
Collapse
Affiliation(s)
| | - Olga S Papadopoulou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-DEMETER, Sof. Venizelou 1, Lycovrissi, 14123 Attica, Greece.
| | | | | | | |
Collapse
|
6
|
Metabolic adaptability shifts of cell membrane fatty acids of Komagataeibacter hansenii HDM1-3 improve acid stress resistance and survival in acidic environments. J Ind Microbiol Biotechnol 2019; 46:1491-1503. [PMID: 31512094 DOI: 10.1007/s10295-019-02225-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/07/2019] [Indexed: 12/17/2022]
Abstract
Komagataeibacter hansenii HDM1-3 (K. hansenii HDM1-3) has been widely applied for producing bacterial cellulose (BC). The yield of BC has been frequently limited by the acidification during sugar metabolism, due to the generation of organic acids such as acetic acid. In this study, the acid resistance mechanism of K. hansenii HDM1-3 has been investigated from the aspect of metabolic adaptability of cell membrane fatty acids. Firstly, we observed that the survival rate of K. hansenii HDM1-3 was decreased with lowered pH values (adjusted with acetic acids), accompanied by increased leakage rate. Secondly, the cell membrane adaptability in response to acid stress was evaluated, including the variations of cell membrane fluidity and fatty acid composition. The proportion of unsaturated fatty acids was increased (especially, C18-1w9c and C19-Cyc), unsaturation degree and chain length of fatty acids were also increased. Thirdly, the potential molecular regulation mechanism was further elucidated. Under acid stress, the fatty acid synthesis pathway was involved in the structure and composition variations of fatty acids, which was proved by the activation of both fatty acid dehydrogenase (des) and cyclopropane fatty acid synthase (cfa) genes, as well as the addition of exogenous fatty acids. The fatty acid synthesis of K. hansenii HDM1-3 may be mediated by the activation of two-component sensor signaling pathways in response to the acid stress. The acid resistance mechanism of K. hansenii HDM1-3 adds to our knowledge of the acid stress adaptation, which may facilitate the development of new strategies for improving the industrial performance of this species under acid stress.
Collapse
|
7
|
Iv NWG, Abdul-Wakeel A, Ramos R, Sheen S. Evaluation of Hydrostatic High Pressure and Cold Storage Parameters for the Reduction of Campylobacter jejuni in Chicken Livers. J Food Prot 2019; 82:1039-1044. [PMID: 31124715 DOI: 10.4315/0362-028x.jfp-18-469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/14/2019] [Indexed: 11/11/2022]
Abstract
HIGHLIGHTS
Collapse
Affiliation(s)
- Nereus W Gunther Iv
- Molecular Characterization of Foodborne Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania 19038, USA
| | - Aisha Abdul-Wakeel
- Molecular Characterization of Foodborne Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania 19038, USA
| | - Rommel Ramos
- Food Safety and Intervention Technologies, U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania 19038, USA
| | - Shiowshuh Sheen
- Food Safety and Intervention Technologies, U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania 19038, USA
| |
Collapse
|
8
|
Rapid detection and control of psychrotrophic microorganisms in cold storage foods: A review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
An KA, Jo Y, Akram K, Suh SC, Kwon JH. Assessment of microbial contaminations in commercial frozen duck meats and the application of electron beam irradiation to improve their hygienic quality. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:5444-5449. [PMID: 29675926 DOI: 10.1002/jsfa.9088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 03/28/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND High microbial load is a serious concern in terms of the health-related safety of products of animal origin. In this study, the microbial loads of commercial frozen duck-meat products, including bone-in whole raw, boneless sliced raw, and boneless whole smoked, were investigated for pathogenic contamination. The application of electron beam irradiation was also investigated. RESULTS The samples revealed a serious microbial threat (102 -105 CFU g-1 for total aerobic bacteria and positive for foodborne pathogens), which required effective decontamination technology. Electron-beam irradiation (0, 1, 3, and 7 kGy) could potentially improve the hygienic quality of duck-meat samples. The D10 values for Listeria monocytogenes and Salmonella Typhi were 0.47 and 0.51 kGy, respectively. A direct epifluorescent filter technique and aerobic plate count (DEFT/APC) method was used for screening, while electron-spin resonance (ESR) spectroscopy and gas chromatography with mass spectrometry were effective as confirmatory techniques to identify radiation-induced markers in frozen duck meat. CONCLUSION Electron-beam irradiation has the potential to ensure the microbial safety and hygienic quality of commercial duck meats. Identification of the samples for their irradiation history was also possible using radiation-induced detection markers, including the DEFT/APC, hydroxyapatite ESR radicals, and hydrocarbons. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kyung-A An
- School of Food Science & Biotechnology, Kyungpook National University, Daegu, South Korea
- Hazardous Substances Analysis Division, Daegu Regional Food and Drug Administration, Daegu, South Korea
| | - Yunhee Jo
- School of Food Science & Biotechnology, Kyungpook National University, Daegu, South Korea
| | - Kashif Akram
- School of Food Science & Biotechnology, Kyungpook National University, Daegu, South Korea
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Sang-Cheol Suh
- Hazardous Substances Analysis Division, Daegu Regional Food and Drug Administration, Daegu, South Korea
| | - Joong-Ho Kwon
- School of Food Science & Biotechnology, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
10
|
Teixeira JS, Repková L, Gänzle MG, McMullen LM. Effect of Pressure, Reconstituted RTE Meat Microbiota, and Antimicrobials on Survival and Post-pressure Growth of Listeria monocytogenes on Ham. Front Microbiol 2018; 9:1979. [PMID: 30210467 PMCID: PMC6119701 DOI: 10.3389/fmicb.2018.01979] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 08/06/2018] [Indexed: 01/19/2023] Open
Abstract
Pressure treatment of ready-to-eat (RTE) meats extends the shelf life and reduces risks associated with Listeria monocytogenes. However, pressure reduces numbers of Listeria on ham by less than 5 log (CFU/g) and pressure effects on other meat microbiota are poorly documented. This study investigated the impact of pressure and RTE meat microbiota, with or without nisin and rosemary oil, on survival of Listeria after refrigerated storage. Ham was inoculated with a 5-strain cocktail of L. monocytogenes alone or with a cocktail of RTE meat microbiota consisting of Brochothrix thermosphacta, Carnobacterium maltaromaticum, Leuconostoc gelidum, and Lactobacillussakei. Products were treated at 500 MPa at 5°C for 1 or 3 min, with or without rosemary extract or nisin. Surviving cells were differentially enumerated after pressure treatment and after 4 weeks of refrigerated storage. After 4 weeks of storage, products were also analyzed by high throughput sequencing of 16S rRNA amplicons. Pressure treatment reduced counts of Listeria by 1 to 2 log (CFU/g); inactivation of RTE meat microbiota was comparable. Counts of Listeria increased by 1–3 log (CFU/g) during refrigerated storage. RTE meat microbiota did not influence pressure inactivation of Listeria but prevented growth of Listeria during refrigerated storage. Rosemary extract did not influence bacterial inactivation or growth. The combination of nisin with pressure treatment for 3 min reduced counts of Listeria and meat microbiota by >5 log (CFU/g); after 4 weeks of storage, counts were below the detection limit. In conclusion, pressure alone does not eliminate Listeria or other microbiota on RTE ham; however, the presence of non-pathogenic microbiota prevents growth of Listeria on pressure treated ham and has a decisive influence on post-pressure survival and growth.
Collapse
Affiliation(s)
- Januana S Teixeira
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Lenka Repková
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Lynn M McMullen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
11
|
Huang CY, Sheen S, Sommers C, Sheen LY. Modeling the Survival of Escherichia coli O157:H7 Under Hydrostatic Pressure, Process Temperature, Time and Allyl Isothiocyanate Stresses in Ground Chicken Meat. Front Microbiol 2018; 9:1871. [PMID: 30154776 PMCID: PMC6102346 DOI: 10.3389/fmicb.2018.01871] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/25/2018] [Indexed: 12/30/2022] Open
Abstract
Shiga toxin-producing Escherichia coli O157:H7 (STEC) is a common contaminant in meat and poultry. We investigated the use of non-thermal high pressure processing (HPP), with or without allyl isothiocyanate (AITC) essential oil, to kill STEC in ground chicken meat. Temperature was found an important factor affecting the inactivation of STEC in addition to pressure and process time. A full factorial experiment design (4 factors × 2 levels) was used to facilitate and evaluate the effect of pressure (250–350 MPa), operation temperature (−15–4°C), AITC concentration (0.05–0.15%, w/w), and pressure-holding time (10–20 min) on the inactivation of STEC. A linear model (a polynomial equation) was developed to predict/describe those four parameters’ impact on E. coli O157:H7 survival (R2 = 0.90), as well as a dimensionless non-linear model. Both types of models were validated with data obtained from separate experimental points. The dimensionless model also demonstrated that it may predict the lethality (defined as the log CFU/g reduction of STEC before and after treatment) reasonably well with some factors set slightly outside the design ranges (e.g., a wider application than the linear model). The results provide important information regarding STEC survival as affected by HPP (e.g., pressure, time and temperature) and AITC. With the addition of AITC, the hydrostatic pressure may be lowered to the 250–350 MPa level. Regulatory agencies and food industry may use those models for STEC risk assessment in ground chicken meat. A storage test (at 4 and 10°C, 10 days) after HPP+AITC treatment indicated that AITC may continue depressing or killing the pressure-damaged cells.
Collapse
Affiliation(s)
- Chi-Yun Huang
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.,Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Shiowshuh Sheen
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Christopher Sommers
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
12
|
ur Rahman U, Sahar A, Ishaq A, Aadil RM, Zahoor T, Ahmad MH. Advanced meat preservation methods: A mini review. J Food Saf 2018. [DOI: 10.1111/jfs.12467] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ubaid ur Rahman
- National Institute of Food Science and Technology, Faculty of Food, Nutrition and Home Sciences; University of Agriculture Faisalabad; Pakistan
| | - Amna Sahar
- National Institute of Food Science and Technology, Faculty of Food, Nutrition and Home Sciences; University of Agriculture Faisalabad; Pakistan
- Department of Food Engineering, Faculty of Agricultural Engineering and Technology; University of Agriculture Faisalabad; Faisalabad Pakistan
| | - Anum Ishaq
- National Institute of Food Science and Technology, Faculty of Food, Nutrition and Home Sciences; University of Agriculture Faisalabad; Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, Faculty of Food, Nutrition and Home Sciences; University of Agriculture Faisalabad; Pakistan
| | - Tahir Zahoor
- National Institute of Food Science and Technology, Faculty of Food, Nutrition and Home Sciences; University of Agriculture Faisalabad; Pakistan
| | - Muhammad Haseeb Ahmad
- National Institute of Food Science and Technology, Faculty of Food, Nutrition and Home Sciences; University of Agriculture Faisalabad; Pakistan
| |
Collapse
|
13
|
Barba FJ, Koubaa M, do Prado-Silva L, Orlien V, Sant’Ana ADS. Mild processing applied to the inactivation of the main foodborne bacterial pathogens: A review. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.05.011] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Silva F, Domingues FC, Nerín C. Trends in microbial control techniques for poultry products. Crit Rev Food Sci Nutr 2017; 58:591-609. [PMID: 27438696 DOI: 10.1080/10408398.2016.1206845] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fresh poultry meat and poultry products are highly perishable foods and high potential sources of human infection due to the presence of several foodborne pathogens. Focusing on the microbial control of poultry products, the food industry generally implements numerous preventive measures based on the Hazard Analysis and Critical Control Points (HACCP) food safety management system certification together with technological steps, such as refrigeration coupled to modified atmosphere packaging that are able to control identified potential microbial hazards during food processing. However, in recent years, to meet the demand of consumers for minimally processed, high-quality, and additive-free foods, technologies are emerging associated with nonthermal microbial inactivation, such as high hydrostatic pressure, irradiation, and natural alternatives, such as biopreservation or the incorporation of natural preservatives in packaging materials. These technologies are discussed throughout this article, emphasizing their pros and cons regarding the control of poultry microbiota and their effects on poultry sensory properties. The discussion for each of the preservation techniques mentioned will be provided with as much detail as the data and studies provided in the literature for poultry meat and products allow. These new approaches, on their own, have proved to be effective against a wide range of microorganisms in poultry meat. However, since some of these emergent technologies still do not have full consumer's acceptability and, taking into consideration the hurdle technology concept for poultry processing, it is suggested that they will be used as combined treatments or, more frequently, in combination with modified atmosphere packaging.
Collapse
Affiliation(s)
- Filomena Silva
- a CICS-UBI-Health Sciences Research Centre , University of Beira Interior , Covilhã , Portugal.,b I3A-Aragón Institute of Engineering Research , Zaragoza , Spain
| | - Fernanda C Domingues
- a CICS-UBI-Health Sciences Research Centre , University of Beira Interior , Covilhã , Portugal
| | - Cristina Nerín
- b I3A-Aragón Institute of Engineering Research , Zaragoza , Spain
| |
Collapse
|
15
|
Effect of hydrostatic pressure and antimicrobials on survival of Listeria monocytogenes and enterohaemorrhagic Escherichia coli in beef. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Chen YY, Gänzle MG. Influence of cyclopropane fatty acids on heat, high pressure, acid and oxidative resistance in Escherichia coli. Int J Food Microbiol 2016; 222:16-22. [DOI: 10.1016/j.ijfoodmicro.2016.01.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 01/18/2016] [Accepted: 01/23/2016] [Indexed: 10/22/2022]
|
17
|
Li H, Garcia-Hernandez R, Driedger D, McMullen LM, Gänzle M. Effect of the food matrix on pressure resistance of Shiga-toxin producing Escherichia coli. Food Microbiol 2016; 57:96-102. [PMID: 27052707 DOI: 10.1016/j.fm.2016.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 01/23/2016] [Accepted: 02/06/2016] [Indexed: 12/18/2022]
Abstract
The pressure resistance of Shiga-toxin producing Escherichia coli (STEC) depends on food matrix. This study compared the resistance of two five-strain E. coli cocktails, as well as the pressure resistant strain E. coli AW1.7, to hydrostatic pressure application in bruschetta, tzatziki, yoghurt and ground beef at 600 MPa, 20 °C for 3 min and during post-pressure survival at 4 °C. Pressure reduced STEC in plant and dairy products by more than 5 logs (cfu/ml) but not in ground beef. The pH affected the resistance of STEC to pressure as well as the post-pressure survival. E. coli with food constituents including calcium, magnesium, glutamate, caffeic acid and acetic acid were treated at 600 MPa, 20 °C. All compounds exhibited a protective effect on E. coli. The antimicrobial compounds ethanol and phenylethanol enhanced the inactivation by pressure. Calcium and magnesium also performed protective effects on E. coli during storage. Glutamate, glutamine or glutathione did not significantly influence the post-pressure survival over 12 days. Preliminary investigation on cell membrane was further performed through the use of fluorescence probe 1-N-phenylnaphthylamine. Pressure effectively permeabilised cell membrane, whereas calcium showed no effects on membrane permeabilisation.
Collapse
Affiliation(s)
- Hui Li
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | | | - Darcy Driedger
- Alberta Agriculture and Forestry, Food Processing Development Centre, Leduc, Canada
| | - Lynn M McMullen
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | - Michael Gänzle
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Canada; Hubei University of Technology, School of Food and Pharmaceutical Engineering, Wuhan, China.
| |
Collapse
|
18
|
|
19
|
Gunther NW, Sites J, Sommers C. The effects of high-pressure treatments on Campylobacter jejuni in ground poultry products containing polyphosphate additives. Poult Sci 2015. [DOI: 10.3382/ps/pev199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
20
|
Gänzle M, Liu Y. Mechanisms of pressure-mediated cell death and injury in Escherichia coli: from fundamentals to food applications. Front Microbiol 2015; 6:599. [PMID: 26157424 PMCID: PMC4478891 DOI: 10.3389/fmicb.2015.00599] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/01/2015] [Indexed: 12/12/2022] Open
Abstract
High hydrostatic pressure is commercially applied to extend the shelf life of foods, and to improve food safety. Current applications operate at ambient temperature and 600 MPa or less. However, bacteria that may resist this pressure level include the pathogens Staphylococcus aureus and strains of Escherichia coli, including shiga-toxin producing E. coli. The resistance of E. coli to pressure is variable between strains and highly dependent on the food matrix. The targeted design of processes for the safe elimination of E. coli thus necessitates deeper insights into mechanisms of interaction and matrix-strain interactions. Cellular targets of high pressure treatment in E. coli include the barrier properties of the outer membrane, the integrity of the cytoplasmic membrane as well as the activity of membrane-bound enzymes, and the integrity of ribosomes. The pressure-induced denaturation of membrane bound enzymes results in generation of reactive oxygen species and subsequent cell death caused by oxidative stress. Remarkably, pressure resistance at the single cell level relates to the disposition of misfolded proteins in inclusion bodies. While the pressure resistance E. coli can be manipulated by over-expression or deletion of (stress) proteins, the mechanisms of pressure resistance in wild type strains is multi-factorial and not fully understood. This review aims to provide an overview on mechanisms of pressure-mediated cell death in E. coli, and the use of this information for optimization of high pressure processing of foods.
Collapse
Affiliation(s)
- Michael Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
21
|
Garcia-Hernandez R, McMullen L, Gänzle MG. Development and validation of a surrogate strain cocktail to evaluate bactericidal effects of pressure on verotoxigenic Escherichia coli. Int J Food Microbiol 2015; 205:16-22. [PMID: 25866907 DOI: 10.1016/j.ijfoodmicro.2015.03.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/19/2015] [Accepted: 03/24/2015] [Indexed: 12/21/2022]
Abstract
Many strains of verotoxigenic Escherichia coli (VTEC) are highly resistant to pressure. To facilitate future studies to improve the elimination of VTEC by pressure processing of food, this study developed and validated a cocktail of non-pathogenic strains of E. coli with equal or higher resistance to pressure when compared to pressure resistant strains of VTEC. Strains of E. coli obtained from a beef processing plant were screened for their resistance to heat and pressure. Treatments were carried out in LB broth. Cell counts of 3 out of 16 strains were reduced by 5-6 log (cfu/mL) after 30 min at 60 °C, and cell counts of 10 out of 16 strains were reduced by 5-6 log (cfu/mL) after 30 min at 40 °C and 400 MPa. All highly heat resistant strains were also pressure resistant but not all pressure resistant strains were also heat resistant. Pressure resistant and -sensitive strains of E. coli were treated in presence of 0 or 2% NaCl and at 3, 20, or 40 °C. The effect of these parameters on the lethality of pressure treatments was comparable for all strains. The addition of 2% NaCl did not increase pressure resistance. The bactericidal effect of treatments at 3 and 20 °C and 600 MPa was comparable but inactivation of E. coli was faster at 40 °C and 600 MPa. The resistance to treatment with 600 MPa at 20 °C of a cocktail of 5 non-pathogenic strains of E. coli was compared to a 5 strain cocktail of pressure resistant VTEC. Treatments were performed in ground beef containing 15% fat. Survival and sublethal injury of the two cocktails was comparable; cell counts of beef inoculated with either cocktail were reduced by about 4 log (cfu/mL) after 30 min of treatment. In conclusion, this study validated a cocktail of non-pathogenic strains of E. coli for use as surrogate organisms in studies on the elimination of E. coli by pressure.
Collapse
Affiliation(s)
| | - Lynn McMullen
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | - Michael G Gänzle
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Canada.
| |
Collapse
|
22
|
Feyaerts J, Rogiers G, Corthouts J, Michiels CW. Thiol-reactive natural antimicrobials and high pressure treatment synergistically enhance bacterial inactivation. INNOV FOOD SCI EMERG 2015. [DOI: 10.1016/j.ifset.2014.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Liu Y, Gill A, McMullen L, Gänzle MG. Variation in heat and pressure resistance of verotoxigenic and nontoxigenic Escherichia coli. J Food Prot 2015; 78:111-20. [PMID: 25581185 DOI: 10.4315/0362-028x.jfp-14-267] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study evaluated the heat and pressure resistance of 112 strains of Escherichia coli, including 102 strains of verotoxigenic E. coli (VTEC) representing 23 serotypes and four phylogenetic groups. In an initial screening, the heat and pressure resistance of 100 strains, including 94 VTEC strains, were tested in phosphate-buffered saline (PBS). Treatment at 60°C for 5 min reduced cell counts by 2.0 to 5.5 log CFU/ml; treatment at 600 MPa for 3 min at 25°C reduced the cell counts by 1.1 to 5.5 log CFU/ml. Heat or pressure resistance did not correlate to the phylogenetic group or the serotype. A smaller group of E. coli strains was evaluated for heat and pressure resistance in Luria-Bertani (LB) broth. Generally, the levels of heat resistance of E. coli strains in LB and PBS were similar; however, the levels of pressure resistance observed for treatments in LB broth or PBS were variable. The cell counts of pressure-resistant strains of VTEC were reduced by less than 1.5 log CFU/ml after treatment at 600 MPa for 3 min. E. coli strains were also treated with 600 MPa for 3 min in ground beef or inoculated into beef patties and grilled to 63 or 71°C. The cell counts of the VTEC E. coli O26:H11 strain 05-6544 were reduced by 2 log CFU/g by pressure treatment in ground beef. The cell counts of the heat-resistant E. coli strain AW1.7 were reduced by 1.4 and 3.4 log CFU/g in beef patties grilled to internal temperatures of 63 and 71°C, respectively. The cell counts of E. coli 05-6544 were reduced by less than 3 and 6 log CFU/g in beef patties grilled to internal temperatures of 63 and 71°C, respectively. To study whether the composition of the beef patties influenced heat resistance, E. coli strains AW1.7, AW1.7 Δ pHR1, MG1655, and LMM1030 were mixed into beef patties containing 15 or 35% fat and 0 or 2% NaCl, and the patties were grilled to an internal temperature of 63°C. The highest heat resistance of E. coli was observed in patties containing 15% fat and 2% NaCl.
Collapse
Affiliation(s)
- Yang Liu
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | - Alex Gill
- Health Canada/Sante Canada, Microbiology Research Division, Bureau of Microbial Hazards, Ottawa, Canada
| | - Lynn McMullen
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | - Michael G Gänzle
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Canada; School of Food and Pharmaceutical Engineering, Hubei University of Technology, Wuhan, People's Republic of China.
| |
Collapse
|
24
|
Grossi A, Bolumar T, Søltoft-Jensen J, Orlien V. High pressure treatment of brine enhanced pork semitendinosus: Effect on microbial stability, drip loss, lipid and protein oxidation, and sensory properties. INNOV FOOD SCI EMERG 2014. [DOI: 10.1016/j.ifset.2013.09.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
25
|
Lianou A, Koutsoumanis KP. Strain variability of the behavior of foodborne bacterial pathogens: A review. Int J Food Microbiol 2013; 167:310-21. [DOI: 10.1016/j.ijfoodmicro.2013.09.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 10/26/2022]
|
26
|
Bajovic B, Bolumar T, Heinz V. Quality considerations with high pressure processing of fresh and value added meat products. Meat Sci 2012; 92:280-9. [DOI: 10.1016/j.meatsci.2012.04.024] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/16/2012] [Accepted: 04/18/2012] [Indexed: 12/01/2022]
|
27
|
Pleitner A, Zhai Y, Winter R, Ruan L, McMullen LM, Gänzle MG. Compatible solutes contribute to heat resistance and ribosome stability in Escherichia coli AW1.7. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:1351-7. [PMID: 22841996 DOI: 10.1016/j.bbapap.2012.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 07/19/2012] [Accepted: 07/19/2012] [Indexed: 11/27/2022]
Abstract
This study investigated the mechanisms of heat resistance in Escherichia coli AW1.7 by quantification of cytoplasmic solutes, determination of ribosome denaturation, and by determination of protein denaturation. To assess the contribution of heat shock proteins and compatible solutes, experiments were conducted after exposure to sublethal heat shock, and with cultures grown at NaCl concentrations ranging from 0 to 6%. Heat resistance of E. coli AW1.7 was compared to the heat sensitive E. coli GGG10 and a plasmid-cured, heat sensitive derivative of E. coli AW1.7 named E. coli AW1.7ΔpHR1. Sublethal heat shock improved survival at 60°C of E. coli GGG10 and AW1.7ΔpHR1 but not of E. coli AW1.7. Addition of NaCl increased the heat resistance of all three strains, but only E. coli AW1.7 exhibited high heat resistance when grown in NaCl concentrations ranging from 2 to 6%. E. coli AW1.7 and GGG10 accumulated 16.1 ± 0.8 and 8.8 ± 0.8mmolL⁻¹ amino acids when grown at 0% NaCl, and 1.47 ± 0.07 and 0.78 ± 0.06mmolL⁻¹ carbohydrates when grown at 6% NaCl, respectively. Ribosome denaturation was determined by differential scanning calorimetry. After growth in the presence of 0% NaCl, the 30S subunit denatured at 63.7 ± 0.8°C and 60.7 ± 0.3°C in E. coli AW1.7 and GGG10, respectively. Fourier-transformed-infrared-spectroscopy did not indicate differences in protein denaturation between the strains during heating. In conclusion, heat resistance in E. coli AW1.7 correlates to ribosome stability at 60°C and is dependent on accumulation of cytoplasmic solutes.
Collapse
Affiliation(s)
- Aaron Pleitner
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Canada T6G 2P5
| | | | | | | | | | | |
Collapse
|