1
|
Reiche T, Hageskal G, Hoel S, Tøndervik A, Nærdal GK, Heggeset TMB, Haugen T, Trøen HH, Jakobsen AN. Disinfection in a salmon processing plant: Impact on bacterial communities and efficacy towards foodborne bacteria and biofilms. Int J Food Microbiol 2024; 424:110853. [PMID: 39116462 DOI: 10.1016/j.ijfoodmicro.2024.110853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Salmon aquaculture is the fastest growing food production system in the world. Deficiencies in the quality or safety of salmon can have global repercussions. Controlling food safety aspects during production is therefore essential. Here, we investigate the state of hygiene in a salmon processing plant using next generation sequencing and classical culture-dependent methods to characterize the surface microbiota before and after cleaning and disinfection (C&D) at ten surface sampling points. Total aerobic counts revealed an average reduction in the bacterial loads of 1.1 log CFU/cm2 by C&D. The highest relative abundance in the core microbiota before C&D was assigned to Acinetobacter, Mycoplasmataceae, Pseudomonas and Enterobacteriaceae in descending order. After C&D, we observed a significant increase in the relative abundance of Pseudomonas (p < 0.05). However, variations were found between conveyors, processing machines and drains. To assess the efficacy of commercial disinfectants, we performed susceptibility assays using advanced robotic high-throughput technologies and included foodborne bacteria which may affect food safety and spoilage. These included 128 Pseudomonas isolates, 46 Aeromonas isolates and 59 Enterobacterales isolates sampled from the salmon processing plant. Generally, minimum inhibitory concentrations (MICs) of the disinfectants were below the user concentration recommended by the producer for most isolates. BacTiter-Glo biofilm assays revealed that 30 min exposure to six out of eight commercial disinfectants resulted in an average reduction of relative luminescence >95 % in 59 single-species biofilms selected for screening. However, disinfection alone may not always be sufficient to eradicate biofilms completely. C&D routines must therefore be continuously assessed to maintain food safety and quality. The results from this study can contribute to understand and improve the state of hygiene in salmon processing environments.
Collapse
Affiliation(s)
- Thorben Reiche
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim 7012, Norway.
| | - Gunhild Hageskal
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim 7034, Norway
| | - Sunniva Hoel
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim 7012, Norway
| | - Anne Tøndervik
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim 7034, Norway
| | - Guro Kruge Nærdal
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim 7034, Norway
| | | | - Tone Haugen
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim 7034, Norway
| | - Hanne Hein Trøen
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim 7034, Norway
| | - Anita Nordeng Jakobsen
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim 7012, Norway
| |
Collapse
|
2
|
Jarvis KG, Hsu CK, Pettengill JB, Ihrie J, Karathia H, Hasan NA, Grim CJ. Microbiome Population Dynamics of Cold-Smoked Sockeye Salmon during Refrigerated Storage and after Culture Enrichment. J Food Prot 2021; 85:238-253. [PMID: 34614175 DOI: 10.4315/jfp-21-228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/05/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Cold-smoked salmon is a ready-to-eat seafood product of high commercial importance. The processing and storage steps facilitate the introduction, growth, and persistence of foodborne pathogens and spoilage bacteria. The growth of commensal bacteria during storage and once the product is opened also influence the quality and safety of cold-smoked salmon. Here we investigated the microbial community through targeted 16S rRNA gene and shotgun metagenomic sequencing as means to better understand the interactions among bacteria in cold-smoked salmon. Cold-smoked salmon samples were tested over 30 days of aerobic storage at 4°C and cultured at each time point in a buffered Listeria enrichment broth (BLEB) commonly used to detect Listeria in foods. The microbiomes were composed of Firmicutes and Proteobacteria, namely, Carnobacterium, Brochothrix, Pseudomonas, Serratia, and Psychrobacter. Pseudomonas species were the most diverse species, with 181 taxa identified. In addition, we identified potential homologs to 10 classes of bacteriocins in microbiomes of cold-smoked salmon stored at 4°C and corresponding BLEB culture enrichments. The findings presented here contribute to our understanding of microbiome population dynamics in cold-smoked salmon, including changes in bacterial taxa during aerobic cold storage and after culture enrichment. This may facilitate improvements to pathogen detection and quality preservation of this food. HIGHLIGHTS
Collapse
Affiliation(s)
- Karen G Jarvis
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland 20708
| | - Chiun-Kang Hsu
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland 20708
| | - James B Pettengill
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland 20742
| | - John Ihrie
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland 20742
| | - Hiren Karathia
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Nur A Hasan
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland 20742, USA
| | - Christopher J Grim
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland 20708
| |
Collapse
|
3
|
Rip D, Gouws PA. PCR-Restriction Fragment Length Polymorphism and Pulsed-Field Gel Electrophoresis Characterization of Listeria monocytogenes Isolates from Ready-to-Eat Foods, the Food Processing Environment, and Clinical Samples in South Africa. J Food Prot 2020; 83:518-533. [PMID: 32073615 DOI: 10.4315/0362-028x.jfp-19-301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 11/06/2019] [Indexed: 11/11/2022]
Abstract
ABSTRACT Listeria monocytogenes is a ubiquitous, intracellular foodborne pathogen that is responsible for invasive listeriosis. The ability of L. monocytogenes to cause disease has some correlation with the serotypes of a specific lineage group, making the identification of lineage groups important for epidemiological analysis. The development of typing methods to link the strains of L. monocytogenes to an outbreak of listeriosis would help minimize the spread of the disease. The aim of this study was to design a PCR-restriction fragment length polymorphism (RFLP) method to differentiate between the lineage groups of L. monocytogenes. PCR-amplified fragments of the hly gene for 12 serotypes of L. monocytogenes were sequenced, aligned, and analyzed with the BioEdit program, and single nucleotide polymorphisms (SNPs) within regions of this gene were identified. Because of the difficulty in acquiring a serotype 4ab reference strain, this serotype was not included in this study. We tested the specificity and accuracy of the PCR-RFLP method on these L. monocytogenes reference strains and validated the method with 172 L. monocytogenes strains recovered from humans, food, and the food processing environment in 2000 to 2002 and 2008 to 2010 from regions within South Africa. PCR-RFLP analysis applied in this study placed L. monocytogenes serotypes into one of three lineage groups based on the sequence differences and SNPs within each lineage group. The SNPs were conserved in a region where RFLP analysis could be applied for a distinction between L. monocytogenes lineage groups. HIGHLIGHTS
Collapse
Affiliation(s)
- Diane Rip
- Food Microbiology Research Group, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Pieter A Gouws
- Food Microbiology Research Group, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
4
|
Amadoro C, Rossi F, Pallotta ML, Gasperi M, Colavita G. Traditional dairy products can supply beneficial microorganisms able to survive in the gastrointestinal tract. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
5
|
Jordan K, McAuliffe O. Listeria monocytogenes in Foods. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 86:181-213. [PMID: 30077222 DOI: 10.1016/bs.afnr.2018.02.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Listeria monocytogenes causes listeriosis, a rare foodborne disease with a mortality rate of 20%-30%. The elderly and immunocompromised are particularly susceptible to listeriosis. L. monocytogenes is ubiquitous in nature and can contaminate food-processing environments, posing a threat to the food chain. This is particularly important for ready-to-eat foods as there is no heat treatment or other antimicrobial step between production and consumption. Thus, occurrence and control of L. monocytogenes are important for industry and public health. Advances in whole-genome sequence technology are facilitating the investigation of disease outbreaks, linking sporadic cases to outbreaks, and linking outbreaks internationally. Novel control methods, such as bacteriophage and bacteriocins, can contribute to a reduction in the occurrence of L. monocytogenes in the food-processing environment, thereby reducing the risk of food contamination and contributing to a reduction in public health issues.
Collapse
|
6
|
Nucera DM, Grassi MA, Morra P, Piano S, Tabacco E, Borreani G. Detection, identification, and typing of Listeria species from baled silages fed to dairy cows. J Dairy Sci 2016; 99:6121-6133. [PMID: 27209131 DOI: 10.3168/jds.2016-10928] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/06/2016] [Indexed: 11/19/2022]
Abstract
Anaerobiosis, critical for successful ensilage, constitutes a challenge in baled silages. The loss of complete anaerobiosis causes aerobic deterioration and silages undergo dry matter and nutrient losses, pathogen growth, and mycotoxin production. Silage may represent an ideal substrate for Listeria monocytogenes, a pathogen of primary concern in several cheeses. The aim of this research was to investigate the occurrence of Listeria in baled silage fed to cows producing milk for a protected designation of origin cheese, and to characterize isolates by repetitive sequence-based PCR. Listeria spp. were detected in 21 silages and L. monocytogenes in 6 out of 80 of the analyzed silages; 67% of positives were found in molded zones. Results of the PCR typing showed genotypic homogeneity: 72.9 and 78.8% similarity between strains of Listeria spp. (n=56) and L. monocytogenes (n=24), respectively. Identical profiles were recovered in molded and nonmolded areas, indicating that contamination may have occurred during production. The application of PCR allowed the unambiguous identification of Listeria isolated from baled silages, and repetitive sequence-based PCR allowed a rapid and effective typing of isolates. Results disclose the potential of the systematic typing of Listeria in primary production, which is needed for the understanding of its transmission pathways.
Collapse
Affiliation(s)
- D M Nucera
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, 10095 Grugliasco (TO), Italy
| | - M A Grassi
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco (TO), Italy
| | - P Morra
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco (TO), Italy
| | - S Piano
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, 10095 Grugliasco (TO), Italy
| | - E Tabacco
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, 10095 Grugliasco (TO), Italy
| | - G Borreani
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, 10095 Grugliasco (TO), Italy.
| |
Collapse
|
7
|
Hadjilouka A, Andritsos ND, Paramithiotis S, Mataragas M, Drosinos EH. Listeria monocytogenes serotype prevalence and biodiversity in diverse food products. J Food Prot 2014; 77:2115-20. [PMID: 25474059 DOI: 10.4315/0362-028x.jfp-14-072] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of this study was to assess serotype prevalence and biodiversity of Listeria monocytogenes strains isolated from diverse food products, i.e., minced pork, fruits, and vegetables. Three hundred twenty-six samples previously purchased from supermarkets and street markets within the Athens area were studied for L. monocytogenes prevalence. A total of 121 strains were isolated from the 36 samples that were positive for L. monocytogenes. Serotyping was performed with multiplex PCR, and biodiversity was assessed with random amplified polymorphic DNA (RAPD) PCR analysis using M13, UBC155, and HLWL85 as primers and with repetitive element palindromic (rep) PCR analysis using (GTG)5 as the primer. The majority (17 of 22) of the contaminated minced pork samples contained strains identified as serotype 1/2a, either alone or in combination with strains belonging to serotypes 1/2b, 4a, 4c, or 4ab. However, all L. monocytogenes isolates from fruits and vegetables belonged to serotype 4b. Rep-PCR provided better differentiation of the isolates than did RAPD PCR and resulted in discrimination of the isolates into a larger number of unique profiles. Complete differentiation was achieved only with the combination of these subtyping techniques.
Collapse
Affiliation(s)
- Agni Hadjilouka
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, GR-118 55 Athens, Greece.
| | - Nikolaos D Andritsos
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, GR-118 55 Athens, Greece
| | - Spiros Paramithiotis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, GR-118 55 Athens, Greece
| | - Marios Mataragas
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, GR-118 55 Athens, Greece
| | - Eleftherios H Drosinos
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, GR-118 55 Athens, Greece
| |
Collapse
|
8
|
Jami M, Ghanbari M, Zunabovic M, Domig KJ, Kneifel W. Listeria monocytogenesin Aquatic Food Products-A Review. Compr Rev Food Sci Food Saf 2014. [DOI: 10.1111/1541-4337.12092] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Mansooreh Jami
- Dept. of Food Science and Technology; Inst. of Food Science; BOKU-Univ. of Natural Resources and Life Sciences; Muthgasse 18, A-1190 Vienna Austria
- Dept. of Fisheries; Faculty of Natural Resources; Univ. of Zabol; Zabol Iran
| | - Mahdi Ghanbari
- Dept. of Food Science and Technology; Inst. of Food Science; BOKU-Univ. of Natural Resources and Life Sciences; Muthgasse 18, A-1190 Vienna Austria
- Dept. of Fisheries; Faculty of Natural Resources; Univ. of Zabol; Zabol Iran
| | - Marija Zunabovic
- Dept. of Food Science and Technology; Inst. of Food Science; BOKU-Univ. of Natural Resources and Life Sciences; Muthgasse 18, A-1190 Vienna Austria
| | - Konrad J. Domig
- Dept. of Food Science and Technology; Inst. of Food Science; BOKU-Univ. of Natural Resources and Life Sciences; Muthgasse 18, A-1190 Vienna Austria
| | - Wolfgang Kneifel
- Dept. of Food Science and Technology; Inst. of Food Science; BOKU-Univ. of Natural Resources and Life Sciences; Muthgasse 18, A-1190 Vienna Austria
| |
Collapse
|
9
|
|
10
|
Diagnostic Performance of rep-PCR as a Rapid Subtyping Method for Listeria monocytogenes. FOOD ANAL METHOD 2012. [DOI: 10.1007/s12161-012-9496-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|