1
|
Bhowmik B, Chowdhury A, Bhuiyan MNI, Afrin S, Sarkar R, Dey SS, Siddique S, Satter Miah MA. Biofilm associated growth inhibition of XDR Escherichia fergusonii strain ACE12 isolated from soil. Microb Pathog 2025; 201:107400. [PMID: 39983883 DOI: 10.1016/j.micpath.2025.107400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/11/2025] [Accepted: 02/19/2025] [Indexed: 02/23/2025]
Abstract
Biofilm formation by bacteria is highly recognized for virulence factors resulting in their resistance to antimicrobials that lead to biofilm-associated infections. In this study, we isolated Escherichia fergusonii from soil, characterized its biofilm-associated growth, and evaluated the inhibitory potential of anti-biofilm compounds. Test isolate ACE12 was precisely identified as E. fergusonii based on the morphological and 16S rRNA gene sequence analysis. The antibiotic susceptibility pattern of ACE12 showed its resistance to β-Lactams, Aminoglycosides, Macrolides, Tetracycline, Trimethoprim, Vancomycin, & Nitrofurans and on the basis of its resistant pattern the isolate was categorized as extensively drug-resistant (XDR) bacteria. In addition, the research isolate ACE12 was found to harbor four distinct antibiotic resistant genes including dfrA1, blaTem-1, tetC, and sul1, encoding the resistant determinants for trimethoprim, β-lactam, tetracycline, and sulfonamide antibiotics, respectively. Initial screening of biofilm formation by Congo-Red Agar (CRA) and Tube method demonstrated that E. fergusonii ACE12 is a biofilm-forming bacterium. The respective biofilm was characterized by estimating the optical density (OD595) of crystal violet (CV)-stained biofilm by Microtiter plate assay, confirming E. fergusonii as a strong biofilm former. Evaluation of anti-biofilm activity of metal salt of zinc (ZnSO4.7H2O), 1,1-Diphenyl-2-Picrylhydrazyl (DPPH), and two phenolic acids including tannic acid (TA) and trans-cinnamic acid (trans-CA) showed that ≥80 % of biofilm was inhibited at their minimum inhibitory concentrations of 15-100 μg/ml for ZnSO4.7H2O, 250-500 μg/ml for DPPH, 40-50 μg/ml for TA, and 500-1000 μg/ml for Trans-CA. Additionally, at a concentration of 2500 μg/ml, ZnO-1 exhibited approximately 80 % biofilm reduction whereas 70 % biofilm was inhibited by ZnO-6. These findings exhibit that, the studied anti-biofilm compounds can effectively inhibit the biofilm associated growth of E. fergusonii.
Collapse
Affiliation(s)
- Banasree Bhowmik
- Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Abhijit Chowdhury
- Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh; Central Analytical & Research Facilities (CARF), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh.
| | - Mohammad Nazrul Islam Bhuiyan
- Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Sadia Afrin
- Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Rajib Sarkar
- Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Subarna Sandhani Dey
- Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Shahariar Siddique
- Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Mohammed Abdus Satter Miah
- Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| |
Collapse
|
2
|
Torkan A, Askari Badouei M. Investigating the virulence-associated genes and antimicrobial resistance of Escherichia fergusonii Isolated from diseased ostrich chicks. Comp Immunol Microbiol Infect Dis 2024; 112:102226. [PMID: 39168034 DOI: 10.1016/j.cimid.2024.102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
This study investigates the presence of virulence-associated genes and antimicrobial resistance (AMR) in Escherichia fergusonii isolates obtained from ostrich chicks. A total of 287 isolates were recovered from 106 fecal samples from ostrich chicks suffering from diarrhea and subjected to molecular identification and biochemical characterization. E. fergusonii was detected in 10 samples (9.4 %) using two PCR-detection protocols. Notably, the isolates lacked various virulence genes commonly associated with pathogenic E. coli including elt, est, stx, eae, ehly, cdt, iss, iutA, iroN, hlyA, ompT, except for one isolate harboring the astA gene. Antimicrobial susceptibility testing revealed that all isolates were susceptible to ciprofloxacin, while high resistance was observed against amoxicillin clavulanate (AMC), trimethoprim-sulfamethoxazole (SXT), and doxycycline (D). Moreover, eight isolates displayed multidrug resistance (MDR) and four exhibited resistance to 9-11 antimicrobials. The most frequent resistance gene was sul2, which was present in all isolates; the other resistance genes detected consisted of int1 (4/10), int2 (3/10), blaCMY (2/10), and qnrS, blaTEM, blaCMY, blaCTX-M, and flo each were detected only in one E. fergusonii Isolate. Plasmid replicon typing identified the presence of I1 (7/10), N (5/10), and Y (1/10). This study provides valuable insights into the virulence and antimicrobial resistance of E. fergusonii isolates from ostrich chicks, highlighting the complexity of antimicrobial resistance mechanisms exhibited by these bacteria. Further research is essential to understand the transmission dynamics and clinical implications of these findings in veterinary and public health settings.
Collapse
Affiliation(s)
- Afagh Torkan
- Department of Pathobiology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Mahdi Askari Badouei
- Department of Pathobiology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| |
Collapse
|
3
|
Sattar S, Bailie M, Yaqoob A, Khanum S, Fatima K, Altaf AURB, Ahmed I, Shah STA, Munawar J, Zehra QA, Daud S, Arshad A, Imdad K, Javed S, Tariq A, Bostan N, Altermann E. Characterization of two novel lytic bacteriophages having lysis potential against MDR avian pathogenic Escherichia coli strains of zoonotic potential. Sci Rep 2023; 13:10043. [PMID: 37340022 DOI: 10.1038/s41598-023-37176-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/17/2023] [Indexed: 06/22/2023] Open
Abstract
Avian pathogenic E. coli (APEC) is associated with local and systemic infections in poultry, ducks, turkeys, and many other avian species, leading to heavy economical losses. These APEC strains are presumed to possess zoonotic potential due to common virulence markers that can cause urinary tract infections in humans. The prophylactic use of antibiotics in the poultry sector has led to the rapid emergence of Multiple Drug Resistant (MDR) APEC strains that act as reservoirs and put human populations at risk. This calls for consideration of alternative strategies to decrease the bacterial load. Here, we report isolation, preliminary characterization, and genome analysis of two novel lytic phage species (Escherichia phage SKA49 and Escherichia phage SKA64) against MDR strain of APEC, QZJM25. Both phages were able to keep QZJM25 growth significantly less than the untreated bacterial control for approximately 18 h. The host range was tested against Escherichia coli strains of poultry and human UTI infections. SKA49 had a broader host range in contrast to SKA64. Both phages were stable at 37 °C only. Their genome analysis indicated their safety as no recombination, integration and host virulence genes were identified. Both these phages can be good candidates for control of APEC strains based on their lysis potential.
Collapse
Affiliation(s)
- Sadia Sattar
- Molecular Virology Labs, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan.
| | - Marc Bailie
- AgResearch, Palmerston North, 4410, New Zealand
| | - Akasha Yaqoob
- Molecular Virology Labs, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan
| | | | - Kaniz Fatima
- Molecular Virology Labs, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan
| | - Anees Ur Rehman Bin Altaf
- Molecular Virology Labs, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan
| | - Ibrar Ahmed
- Alpha Genomics Private Limited, Islamabad, 45710, Pakistan
| | - Syed Tahir Abbas Shah
- Functional Genomics Lab, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan
| | - Javeria Munawar
- Molecular Virology Labs, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan
| | - Quaratul Ain Zehra
- Molecular Virology Labs, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan
| | - Sajeela Daud
- Molecular Virology Labs, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan
| | - Ayesha Arshad
- Molecular Virology Labs, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan
| | - Kaleem Imdad
- Microbiology and Immunology Lab, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan
| | - Sundus Javed
- Microbiology and Immunology Lab, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan
| | - Amira Tariq
- Microbiology and Immunology Lab, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan
| | - Nazish Bostan
- Molecular Virology Labs, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan
| | - Eric Altermann
- School of Veterinary Science Massey University Centre for Bioparticle Applications, Massey University, Palmerston North, 4472, New Zealand
| |
Collapse
|
4
|
Kakita T, Shigemura H, Fukuda A, Katamune C, Nidaira M, Kudeken T, Kyan H. Antimicrobial resistance and molecular epidemiological analysis of Escherichia fergusonii harboring the mcr gene in pigs and broiler chickens in Okinawa, Japan. J Vet Med Sci 2023; 85:149-156. [PMID: 36504025 PMCID: PMC10017296 DOI: 10.1292/jvms.22-0288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The dissemination of mcr-harboring Enterobacteriaceae, e.g., Escherichia fergusonii, with resistance to colistin via animal products is a public health concern. In our previous study, E. fergusonii harboring the mcr gene were isolated from 11 pigs and 43 chickens. To understand the spread of mcr-harboring E. fergusonii in Okinawa, Japan, and to gain further insights into how they can be controlled, an antimicrobial susceptibility testing, pulsed-field gel electrophoresis (PFGE), a conjugation test for the transferability of mcr-harboring plasmids, and PCR-based replicon typing (PBRT) were performed using the 54 strains. According to the disk-diffusion and broth microdilution methods, 9 of the 11 strains from pigs and 9 of the 43 strains from chickens had multidrug resistance (MDR). The broth microdilution method showed that all strains were resistant to colistin, and the minimum inhibitory concentration of colistin was 4-16 μg/mL. PFGE suggested identical PFGE types were being transmitted within one pig farm, within one chicken farm, and among several chicken farms. These findings showed that some mcr-harboring E. fergusonii in Okinawa exhibited MDR, and these had spread within farms and between farms. In the mcr gene conjugation test and PBRT, a type IncI2 plasmid replicon was detected in all mcr-1-harboring transconjugants. Therefore, evidence suggests that the IncI2 plasmid is probably involved in the transmission of the mcr-1 gene. It is important to monitor the antimicrobial resistance profile and dissemination of the IncI2 plasmid in mcr-harboring E. fergusonii.
Collapse
Affiliation(s)
- Tetsuya Kakita
- Department of Biological Sciences, Okinawa Prefectural Institute of Health and Environment, Okinawa, Japan
| | - Hiroaki Shigemura
- Division of Pathology and Microbiology, Department of Health Science, Fukuoka Institute of Health and Environmental Sciences, Fukuoka, Japan
| | - Akira Fukuda
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan
| | - Chiharu Katamune
- Division of Pathology and Microbiology, Department of Health Science, Fukuoka Institute of Health and Environmental Sciences, Fukuoka, Japan
| | - Minoru Nidaira
- Department of Biological Sciences, Okinawa Prefectural Institute of Health and Environment, Okinawa, Japan
| | - Tsuyoshi Kudeken
- Department of Biological Sciences, Okinawa Prefectural Institute of Health and Environment, Okinawa, Japan
| | - Hisako Kyan
- Department of Biological Sciences, Okinawa Prefectural Institute of Health and Environment, Okinawa, Japan
| |
Collapse
|
5
|
Srinivas K, Ghatak S, Pyngrope DA, Angappan M, Milton AAP, Das S, Lyngdoh V, Lamare JP, Prasad MCB, Sen A. Avian strains of emerging pathogen Escherichia fergusonii are phylogenetically diverse and harbor the greatest AMR dissemination potential among different sources: Comparative genomic evidence. Front Microbiol 2023; 13:1080677. [PMID: 36741902 PMCID: PMC9895846 DOI: 10.3389/fmicb.2022.1080677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/30/2022] [Indexed: 01/21/2023] Open
Abstract
Introduction Escherichia fergusonii is regarded as an emerging pathogen with zoonotic potential. In the current study, we undertook source-wise comparative genomic analyses (resistome, virulome, mobilome and pangenome) to understand the antimicrobial resistance, virulence, mobile genetic elements and phylogenetic diversity of E. fergusonii. Methods Six E. fergusonii strains (5 multidrug resistant strains and 1 biofilm former) were isolated from poultry (duck faeces and retail chicken samples). Following confirmation by phenotypic and molecular methods, the isolates were further characterized and their genomes were sequenced. Comparative resisto-virulo-mobilome analyses and pangenomics were performed for E. fergusonii genomes, while including 125 other E. fergusonii genomes available from NCBI database. Results and discussion Avian and porcine strains of E. fergusonii were found to carry significantly higher number of antimicrobial resistance genes (p < 0.05) and mobile genetic elements (plasmids, transposons and integrons) (p < 0.05), while the pathogenic potential of bovine strains was significantly higher compared to other strains (p < 0.05). Pan-genome development trends indicated open pan-genome for all strains (0 < γ < 1). Genomic diversity of avian strains was found to be greater than that from other sources. Phylogenetic analysis revealed close clustering among isolates of similar isolation source and geographical location. Indian isolates of E. fergusonii clustered closely with those from Chinese and a singleton Australian isolate. Overall, being the first pangenomic study on E. fergusonii, our analysis provided important cues on genomic features of the emerging pathogen E. fergusonii while highlighting the potential role of avian strains in dissemination of AMR.
Collapse
Affiliation(s)
- Kandhan Srinivas
- Division of Veterinary Public Health, ICAR – Indian Veterinary Research Institute, Bareilly, India,Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, India
| | - Sandeep Ghatak
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, India,*Correspondence: Sandeep Ghatak,
| | - Daniel Aibor Pyngrope
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, India
| | - Madesh Angappan
- Division of Veterinary Public Health, ICAR – Indian Veterinary Research Institute, Bareilly, India,Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, India
| | - Arockiasamy Arun Prince Milton
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, India,Arockiasamy Arun Prince Milton,
| | - Samir Das
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, India
| | - Vanita Lyngdoh
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, India
| | - John Pynhun Lamare
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, India
| | - Mosuri Chendu Bharat Prasad
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, India
| | - Arnab Sen
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, India
| |
Collapse
|
6
|
Mak PHW, Rehman MA, Kiarie EG, Topp E, Diarra MS. Production systems and important antimicrobial resistant-pathogenic bacteria in poultry: a review. J Anim Sci Biotechnol 2022; 13:148. [PMID: 36514172 DOI: 10.1186/s40104-022-00786-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/18/2022] [Indexed: 12/15/2022] Open
Abstract
Economic losses and market constraints caused by bacterial diseases such as colibacillosis due to avian pathogenic Escherichia coli and necrotic enteritis due to Clostridium perfringens remain major problems for poultry producers, despite substantial efforts in prevention and control. Antibiotics have been used not only for the treatment and prevention of such diseases, but also for growth promotion. Consequently, these practices have been linked to the selection and spread of antimicrobial resistant bacteria which constitute a significant global threat to humans, animals, and the environment. To break down the antimicrobial resistance (AMR), poultry producers are restricting the antimicrobial use (AMU) while adopting the antibiotic-free (ABF) and organic production practices to satisfy consumers' demands. However, it is not well understood how ABF and organic poultry production practices influence AMR profiles in the poultry gut microbiome. Various Gram-negative (Salmonella enterica serovars, Campylobacter jejuni/coli, E. coli) and Gram-positive (Enterococcus spp., Staphylococcus spp. and C. perfringens) bacteria harboring multiple AMR determinants have been reported in poultry including organically- and ABF-raised chickens. In this review, we discussed major poultry production systems (conventional, ABF and organic) and their impacts on AMR in some potential pathogenic Gram-negative and Gram-positive bacteria which could allow identifying issues and opportunities to develop efficient and safe production practices in controlling pathogens.
Collapse
Affiliation(s)
- Philip H W Mak
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada.,Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Muhammad Attiq Rehman
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| | - Elijah G Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Edward Topp
- London Research and Development Center, AAFC, London, ON, Canada
| | - Moussa S Diarra
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada.
| |
Collapse
|
7
|
Guan C, Tang B, Yang H, Ma J, Huang Y, Liu C. Emergence of plasmid-mediated tigecycline resistance gene, tet(X4), in Escherichia fergusonii from pigs. J Glob Antimicrob Resist 2022; 30:249-251. [DOI: 10.1016/j.jgar.2022.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 10/17/2022] Open
|
8
|
Tang B, Chang J, Chen Y, Lin J, Xiao X, Xia X, Lin J, Yang H, Zhao G. Escherichia fergusonii, an Underrated Repository for Antimicrobial Resistance in Food Animals. Microbiol Spectr 2022; 10:e0161721. [PMID: 35138151 PMCID: PMC8826826 DOI: 10.1128/spectrum.01617-21] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/16/2022] [Indexed: 12/03/2022] Open
Abstract
A total of 1,400 samples of food animals (pigs, chickens, and ducks) were collected between July and September 2019 in China to uncover the prevalence of E. fergusonii and its potential role in the evolution of antimicrobial resistance (AMR). An isolation of E. fergusonii was performed and pulsed-field gel electrophoresis (PFGE) was used to uncover the genetic relationship. The AMR of E. fergusonii isolates was comprehensively characterized using broth microdilution-based antimicrobial susceptibility testing, S1-PFGE, southern hybridization, whole-genome sequencing, and in-depth bioinformatics analysis. As a result, a total of 133 E. fergusonii isolates were obtained. These isolates could be grouped into 41 PFGE subclades, suggesting a diverse genetic relationship. The resistance phenotypes of sulfafurazole (97.74%) and tetracycline (94.74%) were the most frequently found. Of the E. fergusonii isolates, 51.88% were extended spectrum beta-lactamase (ESBL)-positive. Forty-three different AMR genes were revealed based on 25 genome sequences harboring mcr-1. Briefly, aph(6)-Id, aph(3'')-Ib and tet(A) genes were the most frequently observed, with the highest rate being 76.00% (19/25). Three mcr-1-harboring plasmids were identified after Nanopore sequencing, including pTB31P1 (IncHI2-IncHI2A, 184,652 bp), pTB44P3 (IncI2, 62,882 bp), and pTB91P1 (IncHI2-IncHI2A, 255,882 bp). Additionally, 25 E. fergusonii isolates harboring mcr-1 were clustered together with other E. fergusonii isolates from different regions and sources available in GenBank, suggesting a possible random process of mcr-1 transmission in E. fergusonii. In conclusion, E. fergusonii is widespread in food animals in China and might be an important reservoir of AMR genes, especially mcr-1, and facilitate the evolution of AMR. IMPORTANCEE. fergusonii, a member of the genus Escherichia, has been reported to transmit via the food chain and cause diseases in humans. However, the prevalence of multidrug-resistant E. fergusonii, especially mcr-1-positive E. fergusonii isolates, has rarely been reported. Here, we collected 1,400 samples from food animals in three provinces of China and obtained 133 E. fergusonii isolates (9.5%). We found that the prevalence of E. fergusonii isolates was diverse, with high levels of antimicrobial resistance. Among them, 18.8% E. fergusonii isolates carried the colistin resistance gene mcr-1. Thus, E. fergusonii may facilitate the evolution of colistin resistance as a reservoir of mcr-1. As far as we know, the prevalence and AMR of E. fergusonii in the food animals in this study was first reported in China. These findings increase our understanding of the role of E. fergusonii in public health and the evolution of antibiotic resistance.
Collapse
Affiliation(s)
- Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jiang Chang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yifei Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Jiahui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xingning Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Jun Lin
- Department of Animal Science, The University of Tennessee, Knoxville, Tennessee, USA
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Guoping Zhao
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
9
|
Shah A, Alam S, Kabir M, Fazal S, Khurshid A, Iqbal A, Mumtaz Khan M, Khan W, Qayyum A, Hussain M, El Askary A, Gharib AF, Elesawy BH, Bibi Y. Migratory Birds as Vehicle to Transmit Multi Drug Resistant Extended Spectrum β Lactamase Producing Escherichia fergusonii, an Emerging Zoonotic Pathogen. Saudi J Biol Sci 2022; 29:3167-3176. [PMID: 35844397 PMCID: PMC9280166 DOI: 10.1016/j.sjbs.2022.01.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 10/30/2022] Open
Abstract
The acquisition of multi-drug resistance (MDR) genes by pathogenic bacterial bugs and their dispersal to different food webs has become a silent pandemic. The multiplied use of different antibacterial therapeutics during COVID-19 pandemic has accelerated the process among emerging pathogens. Wild migratory birds play an important role in the spread of MDR pathogens and MDR gene flow due to the consumption of contaminated food and water. Escherichia fergusonii is an emerging pathogen of family Enterobacteriaceae and commonly causes disease in human and animals. The present study focused on the isolation of E. fergusonii from blood, saliva, and intestine of selected migratory birds of the Hazara Division. The sensitivity of isolated strains was assessed against ten different antibiotics. The isolation frequency of E. fergusonii was 69%. In blood samples, a high rate of resistance was observed against ceftriaxone (80%) followed by ampicillin (76%) whereas, in oral and intestinal samples, ceftriaxone resistant strains were 56% and 57% while ampicillin resistance was 49% and 52% respectively. The overall ceftriaxone and ampicillin-resistant cases in all three sample sources were 71% and 65% respectively. In comparison to oral and intestinal samples, high numbers of ceftriaxone-resistant strains were isolated from the blood of mallard while ampicillin-resistant strains were observed in blood samples of cattle egrets. 16S rRNA-based confirmed strains of E. fergusonii were processed for detection of CTX-M and TEM-1 gene through Polymerase chain reaction (PCR) after DNA extraction. Hundred percent ceftriaxone resistant isolates possessed CTX-M and all ampicillin-resistant strains harbored TEM-1 genes. Amplified products were sequenced by using the Sanger sequencing method and the resulted sequences were checked for similarity in the nucleotide Database through the BLAST program. TEM-1 gene showed 99% and the CTX-M gene showed 98% similar sequences in the Database. The 16S rRNA sequence and nucleotide sequences for TEM-1 and CTX-M genes were submitted to Gene Bank with accession numbers LC521304, LC521306, LC521307 respectively. We posit to combat MDR gene flow among the bacterial pathogens across different geographical locations, regular surveillance of new zoonotic pathogens must be conducted.
Collapse
|
10
|
OUP accepted manuscript. FEMS Microbiol Lett 2022; 369:6528371. [DOI: 10.1093/femsle/fnac016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
|
11
|
Saha O, Rakhi NN, Hoque MN, Sultana M, Hossain MA. Genome-wide genetic marker analysis and genotyping of Escherichia fergusonii strain OTSVEF-60. Braz J Microbiol 2021; 52:989-1004. [PMID: 33591555 DOI: 10.1007/s42770-021-00441-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 02/02/2021] [Indexed: 10/21/2022] Open
Abstract
Poultry originated Escherichia fergusonii (POEF), an emerging bacterial pathogen, causes a wide range of intestinal and extra-intestinal infections in the poultry industry which incurred significant economic losses worldwide. Chromosomal co-existence of antibiotics and metal resistance genes has recently been the focal point of POEF isolates besides its pathogenic potentials. This study reports the complete genome analysis of POEF strain OTSVEF-60 from the poultry originated samples of Bangladesh. The assembled draft genome of the strain was 4.2 Mbp containing 4503 coding sequences, 120 RNA (rRNA = 34, tRNA = 79, ncRNA = 7), and three intact phage signature regions. Forty-one broad range antibiotic resistance genes (ARGs) including dfrA12, qnrS1, blaTEM-1, aadA2, tet(A), and sul-2 along with multiple efflux pump genes were detected, which translated to phenotypic resistant patterns of the pathogen to trimethoprim, fluoroquinolones, β-lactams, aminoglycoside, tetracycline, and sulfonamides. Moreover, 22 metal resistance genes were found co-existing within the genome of the POEF strain, and numerous virulence genes (VGs) coding for cit (AB), feo (AB), fep (ABCG), csg (ABCDEFG), fliC, ompA, gadA, ecpD, etc. were also identified throughout the genome. In addition, we detected a class I integron gene cassette harboring dfrA12, ant (3″)-I, and qacEΔ-sul2 genes; 42 copies of insertion sequence (IS) elements; and two CRISPR arrays. The genomic functional analysis predicted several metabolic pathways related to motility, flagellar assembly, epithelial cell invasion, quorum sensing, biofilm formation, and biosynthesis of vitamin, co-factors, and secondary metabolites. We herein for the first time detected multiple ARGs, VGs, mobile genetic elements, and some metabolic functional genes in the complete genome of POEF strain OTSVEF-60, which might be associated with the pathogenesis, spreading of ARGs and VGs, and subsequent treatment failure against this emerging avian pathogen with currently available antimicrobials.
Collapse
Affiliation(s)
- Otun Saha
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Nadira Naznin Rakhi
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - M Nazmul Hoque
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh.,Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Munawar Sultana
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - M Anwar Hossain
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh. .,Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| |
Collapse
|
12
|
Tardón A, Bataller E, Llobat L, Jiménez-Trigos E. Bacteria and antibiotic resistance detection in fractures of wild birds from wildlife rehabilitation centres in Spain. Comp Immunol Microbiol Infect Dis 2020; 74:101575. [PMID: 33260016 DOI: 10.1016/j.cimid.2020.101575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/23/2020] [Accepted: 11/03/2020] [Indexed: 12/29/2022]
Abstract
Anatomic adaptations make birds more prone to open fractures with exposed bone parts losing vascularization. As a result of this exposure, fractures are colonized by different microorganisms, including different types of bacteria, both aerobic and anaerobic, causing osteomyelitis in many cases. For this reason, antibiotic treatment is common. However, carrying out antibiotic treatment without carrying out a previous antibiogram may contribute to increased resistance against antibiotics, especially in migratory wild birds. In this paper, bacterial counts regarding fracture type, bacterial identification and antibiotic resistance have been analysed in wild birds from wildlife rehabilitation centres in Spain. The results obtained showed that open fractures had higher bacterial counts (CFU/mL) than closed ones. Bacteria in family Enterobacteriaceae, identified were Escherichia spp., Enterobacter spp., Shigella spp., Hafnia alvei, Proteus mirabilis, Leclercia adecarboxylata and Pantoea agglomerans. Other bacteria present in wild birds' fractures were Aeromonas spp., Enterococcus spp. Bacillus wiedmannii and Staphylococcus sciuri. All species found presented resistance to at least one of the antibiotics used. Wild birds can be implicated in the introduction, maintenance and global spreading of antibiotic resistant bacteria and represent an emerging public health concern. Results obtained in this paper support the idea that it is necessary to take this fact into account before antibiotic administration to wild animals, since it could increase the number of bacteria resistant to antibiotics.
Collapse
Affiliation(s)
- A Tardón
- CREW Foundation (Conservation and Research for Endangered Wildlife), Lleida, Spain
| | - E Bataller
- Research Group Microbiological Agents Associated With Animal Reproduction (PROVAGINBIO), Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA) Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Spain
| | - L Llobat
- Research Group Microbiological Agents Associated With Animal Reproduction (PROVAGINBIO), Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA) Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Spain.
| | - E Jiménez-Trigos
- Research Group Microbiological Agents Associated With Animal Reproduction (PROVAGINBIO), Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA) Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Spain.
| |
Collapse
|
13
|
Aziz G, Zaidi A, Bakht U, Parveen N, Ahmed I, Haider Z, Muhammad T. Microbial safety and probiotic potential of packaged yogurt products in Pakistan. J Food Saf 2019. [DOI: 10.1111/jfs.12741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ghazal Aziz
- National Probiotic LabNational Institute for Biotechnology and Genetic Engineering (NIBGE) Faisalabad Punjab Pakistan
- Dept of BiotechnologyPakistan Institute of Engineering and Applied Sciences (PIEAS) Nilore Islamabad Pakistan
| | - Arsalan Zaidi
- National Probiotic LabNational Institute for Biotechnology and Genetic Engineering (NIBGE) Faisalabad Punjab Pakistan
- Dept of BiotechnologyPakistan Institute of Engineering and Applied Sciences (PIEAS) Nilore Islamabad Pakistan
| | - Urooj Bakht
- Institute of Biotechnology and Molecular BiologyUniversity of Lahore (UoL) Lahore Punjab Pakistan
| | - Naila Parveen
- National Probiotic LabNational Institute for Biotechnology and Genetic Engineering (NIBGE) Faisalabad Punjab Pakistan
| | - Ibrar Ahmed
- R&D Section, Alpha Genomics (Pvt) Ltd Islamabad Pakistan
| | - Zeeshan Haider
- Institute of Biotechnology and Molecular BiologyUniversity of Lahore (UoL) Lahore Punjab Pakistan
| | - Tariq Muhammad
- National Probiotic LabNational Institute for Biotechnology and Genetic Engineering (NIBGE) Faisalabad Punjab Pakistan
- Dept of BiotechnologyPakistan Institute of Engineering and Applied Sciences (PIEAS) Nilore Islamabad Pakistan
| |
Collapse
|
14
|
Rehman MA, Hasted TL, Persaud-Lachhman MG, Yin X, Carrillo C, Diarra MS. Genome Analysis and Multiplex PCR Method for the Molecular Detection of Coresistance to Cephalosporins and Fosfomycin in Salmonella enterica Serovar Heidelberg. J Food Prot 2019; 82:1938-1949. [PMID: 31633426 DOI: 10.4315/0362-028x.jfp-19-205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Heidelberg is among the top three Salmonella enterica serovars associated with human foodborne illness in Canada. Traditional culture and antimicrobial susceptibility testing techniques can be time-consuming to identify Salmonella Heidelberg resistant to cephalosporins and fosfomycin. Rapid and accurate detection of such antibiotic-resistant Salmonella Heidelberg isolates is essential to adopt appropriate control measures. In this study, 15 Salmonella Heidelberg strains isolated from feces of Canadian broiler chickens were characterized by whole genome sequencing. Salmonella Heidelberg genomes had an average coverage of greater than 80-fold, an average of 4,761 protein-coding genes, and all belonged to multilocus sequence type ST15. Genome sequences were compared with genomes in the National Center for Biotechnology Information Pathogen Detection database ( www.ncbi.nlm.nih.gov/pathogens/ ), including human outbreak isolates. The Canadian broiler isolates clustered with chicken isolates from the United States and an equine clinical isolate from Ontario, Canada. In agreement with their antimicrobial resistance phenotypes, several chromosomally encoded specific antimicrobial resistance genes including fosA7 and multidrug resistance efflux pump determinants were detected. An AmpC-like β-lactamase gene, blaCMY-2, linked with a quaternary ammonium compound resistance gene, sugE, on a replicon type IncI1 plasmid was detected in all 15 broiler Salmonella Heidelberg isolates. Of the 205,031 published Salmonella genomes screened in silico, 4,954 (2.4%) contained blaCMY-2, 8,143 (4.0%) contained fosA7, and 919 (0.4%) contained both resistance genes. The combination of both resistance genes (fosA7 and blaCMY-2) was detected in 64% of the Heidelberg genomes and in a small proportion of various other serovars. A PCR method was developed to detect Salmonella Heidelberg in pure culture and chicken feces based on specific primers targeting genes conferring fosfomycin (fosA7) and third-generation cephalosporin (blaCMY-2) resistance as well as the Salmonella-specific invA gene and the universal 16S rRNA genes. The PCR assay was specific and sensitive for blaCMY-2 and fosA7 harboring Salmonella Heidelberg. However, some other Salmonella serovars containing these two resistance genes could also be detected by the developed PCR method.
Collapse
Affiliation(s)
- Muhammad Attiq Rehman
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, 93, Stone Road West, Guelph, Ontario, Canada N1G 5C9 (ORCID: https://orcid.org/0000-0002-2062-1969 [M.A.R.])
| | - Teri-Lyn Hasted
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, 93, Stone Road West, Guelph, Ontario, Canada N1G 5C9 (ORCID: https://orcid.org/0000-0002-2062-1969 [M.A.R.])
| | - Marissa G Persaud-Lachhman
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, 93, Stone Road West, Guelph, Ontario, Canada N1G 5C9 (ORCID: https://orcid.org/0000-0002-2062-1969 [M.A.R.])
| | - Xianhua Yin
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, 93, Stone Road West, Guelph, Ontario, Canada N1G 5C9 (ORCID: https://orcid.org/0000-0002-2062-1969 [M.A.R.])
| | - Catherine Carrillo
- Canadian Food Inspection Agency, 960, Carling Avenue, Building 22, Ottawa, Ontario, Canada K1A 0Y9
| | - Moussa S Diarra
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, 93, Stone Road West, Guelph, Ontario, Canada N1G 5C9 (ORCID: https://orcid.org/0000-0002-2062-1969 [M.A.R.])
| |
Collapse
|
15
|
Galetti R, Penha Filho RAC, Ferreira JC, Varani AM, Darini ALC. Antibiotic resistance and heavy metal tolerance plasmids: the antimicrobial bulletproof properties of Escherichia fergusonii isolated from poultry. Infect Drug Resist 2019; 12:1029-1033. [PMID: 31190902 PMCID: PMC6511654 DOI: 10.2147/idr.s196411] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/26/2019] [Indexed: 12/02/2022] Open
Abstract
We describe the mobilome of Escherichia fergusonii 40A isolated from poultry, consisting of four different plasmids, p46_40A (IncX1, 45,869 bp), p80_40A (non-typable, 79,635 bp), p150_40A (IncI1-ST1, 148,340 bp) and p280_40A (IncHI2A-ST2, 279,537 bp). The mobilome-40A carries a blend of several different resistance and virulence genes, heavy metal tolerance operons and conjugation system. This mobilome 40A is a perfect tool to preserve and disseminate antimicrobial resistance and makes the bacterial isolate incredibly adapted to survive under constant antimicrobial pressure.
Collapse
Affiliation(s)
- Renata Galetti
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Joseane Cristina Ferreira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Alessandro M Varani
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Jaboticabal, Brazil
| | - Ana Lúcia Costa Darini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
16
|
Zhao Y, Zhang XX, Zhao Z, Duan C, Chen H, Wang M, Ren H, Yin Y, Ye L. Metagenomic analysis revealed the prevalence of antibiotic resistance genes in the gut and living environment of freshwater shrimp. JOURNAL OF HAZARDOUS MATERIALS 2018; 350:10-18. [PMID: 29448209 DOI: 10.1016/j.jhazmat.2018.02.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/12/2018] [Accepted: 02/03/2018] [Indexed: 05/08/2023]
Abstract
Antibiotic resistance disseminating from animals and their environments is a public issue that poses significant threats to human health. In the present study, the diversity and abundance of antibiotic resistance genes (ARGs) in 15 samples from the guts and related aquaculture environments (water and sediment) of shrimp were investigated. In total, 60 ARGs, 102 ARGs and 67 ARGs primarily belonging to 13, 15 and 15 different types were detected in the shrimp gut, pond water and sediment samples, respectively. Efflux pump and target modification were the predominant resistance mechanisms in all samples. It was found that Aeromonas, Yersinia and Clostridium XlVb were significantly correlated with the distribution of the ARGs. Besides, the relative abundance of ARGs was positively correlated with the levels of mobile genetic elements (MGEs). Moreover, variation partitioning analysis showed that MGEs, contributing to 74.46% of the resistome variation, played an important role in the affecting of the antibiotic resistome than the bacterial communities and their joint effects. Collectively, this study provides comprehensive information to better understand the ARG dissemination in aquaculture environments and to improve the ecological management of aquatic ecosystems.
Collapse
Affiliation(s)
- Yanting Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Zhonghua Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Cuilan Duan
- Fisheries Technology Extension Center of Jiangsu Province, Nanjing 210036, China
| | - Huangen Chen
- Fisheries Technology Extension Center of Jiangsu Province, Nanjing 210036, China
| | - Miaomiao Wang
- Fisheries Technology Extension Center of Jiangsu Province, Nanjing 210036, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
17
|
Rehman MA, Yin X, Lepp D, Laing C, Ziebell K, Talbot G, Topp E, Diarra MS. Genomic Analysis of Third Generation Cephalosporin Resistant Escherichia coli from Dairy Cow Manure. Vet Sci 2017; 4:vetsci4040057. [PMID: 29149094 PMCID: PMC5753637 DOI: 10.3390/vetsci4040057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 01/08/2023] Open
Abstract
The production of extended-spectrum β-lactamases (ESBLs) conferring resistance to new derivatives of β-lactams is a major public health threat if present in pathogenic Gram-negative bacteria. The objective of this study was to characterize ceftiofur (TIO)- or cefotaxime (FOX)-resistant Escherichia coli isolated from dairy cow manure. Twenty-four manure samples were collected from four farms and incubated under anaerobic conditions for 20 weeks at 4 °C or at 25 °C. A total of 37 TIO- or FOX-resistant E. coli were isolated from two of the four farms to determine their susceptibility to 14 antibiotics. Among the 37 resistant E. coli, 10 different serotypes were identified, with O8:H1 being the predominant serotype (n = 17). Five isolates belonged to each of serotypes O9:NM and O153:H42, respectively. All 37 cephalosporin resistant isolates were multi-resistant with the most prevalent resistance spectrum being amoxicillin-clavulanic acid-ampicillin-cefoxitin-ceftiofur-ceftriaxone-chloramphenicol-streptomycin-sulfisoxazole-tetracycline-trimethoprim-sulfamethoxazole. The genomes of 18 selected isolates were then sequenced and compared to 14 selected human pathogenic E. coli reference genomes obtained from public repositories using different bioinformatics approaches. As expected, all 18 sequenced isolates carried at least one β-lactamase bla gene: TEM-1, TEM-81, CTX-M115, CTX-M15, OXA-1, or CMY-2. Several other antibiotic resistance genes (ARGs) and virulence determinants were detected in the sequenced isolates and all of them harbored antimicrobial resistance plasmids belonging to classic Inc groups. Our results confirm the presence of diverse ESBL producing E. coli isolates in dairy cow manure stored for a short period of time. Such manure might constitute a reservoir of resistance and virulence genes for other bacteria that share the same environment.
Collapse
Affiliation(s)
- Muhammad Attiq Rehman
- Guelph Research and Development Center, Agriculture and Agri-Food Canada (AAFC), Guelph, ON N1G 5C9, Canada.
| | - Xianhua Yin
- Guelph Research and Development Center, Agriculture and Agri-Food Canada (AAFC), Guelph, ON N1G 5C9, Canada.
| | - Dion Lepp
- Guelph Research and Development Center, Agriculture and Agri-Food Canada (AAFC), Guelph, ON N1G 5C9, Canada.
| | - Chad Laing
- National Microbiology Laboratory at Lethbridge, Public Health Agency of Canada, Lethbridge, AB T1J 3Z4, Canada.
| | - Kim Ziebell
- National Microbiology Laboratory at Guelph, Public Health Agency of Canada, Guelph, ON N1G 3W4, Canada.
| | - Guylaine Talbot
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada (AAFC), Sherbrooke, QC J1M 0C8, Canada.
| | - Edward Topp
- London Research and Development Center, Agriculture and Agri-Food Canada (AAFC), London, ON N5V 4T3, Canada.
| | - Moussa Sory Diarra
- Guelph Research and Development Center, Agriculture and Agri-Food Canada (AAFC), Guelph, ON N1G 5C9, Canada.
| |
Collapse
|
18
|
Salaheen S, Kim SW, Haley BJ, Van Kessel JAS, Biswas D. Alternative Growth Promoters Modulate Broiler Gut Microbiome and Enhance Body Weight Gain. Front Microbiol 2017; 8:2088. [PMID: 29123512 PMCID: PMC5662582 DOI: 10.3389/fmicb.2017.02088] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/11/2017] [Indexed: 02/01/2023] Open
Abstract
Antibiotic growth promoters (AGPs) are frequently used to enhance weight-gain in poultry production. However, there has been increasing concern over the impact of AGP on the emergence of antibiotic resistance in zoonotic bacterial pathogens in the microbial community of the poultry gut. In this study, we adopted mass-spectrophotometric, phylogenetic, and shotgun-metagenomic approaches to evaluate bioactive phenolic extracts (BPE) from blueberry (Vaccinium corymbosum) and blackberry (Rubus fruticosus) pomaces as AGP alternatives in broilers. We conducted two trials with 100 Cobb-500 broiler chicks (in each trial) in four equal groups that were provided water with no supplementation, supplemented with AGP (tylosin, neomycin sulfate, bacitracin, erythromycin, and oxytetracycline), or supplemented with 0.1 g Gallic acid equivalent (GAE)/L or 1.0 g GAE/L (during the last 72 h before euthanasia) of BPE for 6 weeks. When compared with the control group (water only), the chickens supplemented with AGP and 0.1 g GAE/L of BPE gained 9.5 and 5.8% more body weight, respectively. The microbiomes of both the AGP- and BPE-treated chickens had higher Firmicutes to Bacteroidetes ratios. AGP supplementation appeared to be associated with higher relative abundance of bacteriophages and unique cecal resistomes compared with BPE supplementation or control. Functional characterization of cecal microbiomes revealed significant animal-to-animal variation in the relative abundance of genes involved in energy and carbohydrate metabolism. These findings established a baseline upon which mechanisms of plant-based performance enhancers in regulation of animal growth can be investigated. In addition, the data will aid in designing alternate strategies to improve animal growth performance and consequently production.
Collapse
Affiliation(s)
- Serajus Salaheen
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD, United States
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Seon-Woo Kim
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD, United States
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Bradd J. Haley
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD, United States
| | - Jo Ann S. Van Kessel
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD, United States
| | - Debabrata Biswas
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
- Center for Food Safety and Security Systems, University of Maryland, College Park, MD, United States
| |
Collapse
|