1
|
Pietrangelo L, Dattola A, Magnifico I, Petronio Petronio G, Cutuli MA, Venditti N, Guarnieri A, Wollenberg A, Pellacani G, Di Marco R. Efficacy and Microbiota Modulation Induced by LimpiAL 2.5%, a New Medical Device for the Inverse Psoriasis Treatment. Int J Mol Sci 2023; 24:ijms24076339. [PMID: 37047310 PMCID: PMC10094358 DOI: 10.3390/ijms24076339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
(1) Inverse psoriasis (IP), also known as intertriginous, typically affects the groin, armpits, navel, intergluteal fissure, and external genitalia. Skin lesions are erythematous plaques of inflammatory nature, smooth, well-delimited, non-scaly, and non-infiltrated. Lesions may be accompanied by itching, pain, or burning sensation. The aim of this study is both to investigate the modulation of the skin microbiota induced by IP and, on the other hand, to test the effectiveness of the new biotechnological product LimpiAL 2.5%. (2) Patients affected by IP were recruited in a private practice and treated for 4 weeks with LimpiAL 2.5% exclusively. The clinical effects on the lesion skin were evaluated, and the skin microbiotas before and after treatment were compared. (3) The clinical outcomes reveled a significant beneficial effect of the tested product. At the same time, LimpiAL increased the biological diversity of the skin microbiota and exerted a significant decrease of some Corynebacterium species, and the increase of some Staphylococcus species. (4) Together, the clinical outcomes and the microbiota analysis suggest that LimpiAL treatment improves the skin condition of affected patients, basically restoring the eubiosis conditions of the affected sites and modulating the bacterial composition of the resident microbiota.
Collapse
|
2
|
Roots of the xerophyte Panicum turgidum host a cohort of ionizing-radiation-resistant biotechnologically-valuable bacteria. Saudi J Biol Sci 2022; 29:1260-1268. [PMID: 35197792 PMCID: PMC8847929 DOI: 10.1016/j.sjbs.2021.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 11/21/2022] Open
Abstract
Bacterial communities associated with roots of Panicum turgidum, exposed to arid conditions, were investigated with a combination of cultural and metataxonomic approaches. Traditional culture-based techniques were used and 32 isolates from the irradiated roots were identified as belonging to Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria phyla. Four actinobacterial strains were shown to be ionizing-radiation (IR)-resistant: Microbacterium sp. PT8 (4.8 kGy (kGy)), Micrococcus sp. PT11 (4.4 kGy), Kocuria rhizophila PT10 (2.9 kGy) and Promicromonospora panici PT9T (2.6 kGy), based on the D10 dose necessary for a 90% reduction in colony forming units (CFU). Concerning the investigation of microbial communities in situ, metataxonomic analyses of the diversity of IR-resistant microorganisms associated with irradiated roots revealed a marked dominance of Actinobacteria (46.6%) and Proteobacteria (31.5%) compared to Bacteroidetes (4.6%) and Firmicutes (3.2%). Gamma irradiation not only changed the structure of bacterial communities, but also affected their functional properties. Comparative analyses of metabolic profiles indicated the induction of several pathways related to adaptation to oxidative stress in irradiated roots, such as DNA repair, secondary metabolites synthesis, reactive oxygen species (ROS)-mitigating enzymes, etc. P. turgidum is emblematic of desert-adapted plants. Until now, there is no other work that has focused on the microbial profile of irradiated roots of this xerophyte.
Collapse
|
3
|
Hussain MS, Vashist A, Kumar M, Taneja NK, Gautam US, Dwivedi S, Tyagi JS, Gupta RK. Anti-mycobacterial activity of heat and pH stable high molecular weight protein(s) secreted by a bacterial laboratory contaminant. Microb Cell Fact 2022; 21:15. [PMID: 35093096 PMCID: PMC8799974 DOI: 10.1186/s12934-022-01743-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/13/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Tuberculosis currently stands as the second leading cause of deaths worldwide due to single infectious agent after Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The current challenges of drug resistance in tuberculosis highlight an urgent need to develop newer anti-mycobacterial compounds. In the present study, we report the serendipitous discovery of a bacterial laboratory contaminant (LC-1) exhibiting a zone of growth inhibition on an agar plate seeded with Mycobacterium tuberculosis. RESULTS We utilized microbiological, biochemical and biophysical approaches to characterize LC-1 and anti-mycobacterial compound(s) in its secretome. Based on 16S rRNA sequencing and BIOLOG analysis, LC-1 was identified as Staphylococcus hominis, a human bacterial commensal. Anti-mycobacterial activity was initially found in 30 kDa retentate that was obtained by ultrafiltration of culture filtrate (CF). SDS-PAGE analysis of peak fractions obtained by size exclusion chromatography of 30 kDa retentate confirmed the presence of high molecular weight (≥ 30 kDa) proteins. Peak fraction-1 (F-1) exhibited inhibitory activity against M. bovis BCG, but not against M. smegmatis, E. coli and S. aureus. The active fraction F-1 was inactivated by treatment with Proteinase K and α-chymotrypsin. However, it retained its anti-mycobacterial activity over a wide range of heat and pH treatment. The anti-mycobacterial activity of F-1 was found to be maintained even after a long storage (~12 months) at - 20 °C. Mass spectrometry analysis revealed that the identified peptide masses do not match with any previously known bacteriocins. CONCLUSIONS The present study highlights the anti-mycobacterial activity of high molecular weight protein(s) present in culture filtrate of LC-1, which may be tested further to target M. tuberculosis. The heat and pH stability of these proteins add to their characteristics as therapeutic proteins and may contribute to their long shelf life. LC-1 being a human commensal can be tested in future for its potential as a probiotic to treat tuberculosis.
Collapse
Affiliation(s)
- Md Sajid Hussain
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201306, India
- School of Vocational Studies and Applied Sciences, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201306, India
| | - Atul Vashist
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, 110029, India.
- Department of Infection & Immunology, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, 121001, India.
| | - Mahadevan Kumar
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, 110029, India
- Department of Microbiology, Bharati Vidyapeeth University, Medical College, Pune, 411043, India
| | - Neetu Kumra Taneja
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, 110029, India
- Department of Basic and Applied Sciences, NIFTEM, Sonipat, Haryana, 131028, India
| | - Uma Shankar Gautam
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, 110029, India
- School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Seema Dwivedi
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201306, India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Rajesh Kumar Gupta
- School of Vocational Studies and Applied Sciences, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201306, India.
| |
Collapse
|
4
|
Cui Y, Luo L, Wang X, Lu Y, Yi Y, Shan Y, Liu B, Zhou Y, Lü X. Mining, heterologous expression, purification, antibactericidal mechanism, and application of bacteriocins: A review. Compr Rev Food Sci Food Saf 2020; 20:863-899. [PMID: 33443793 DOI: 10.1111/1541-4337.12658] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/04/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Bacteriocins are generally considered as low-molecular-weight ribosomal peptides or proteins synthesized by G+ and G- bacteria that inhibit or kill other related or unrelated microorganisms. However, low yield is an important factor restricting the application of bacteriocins. This paper reviews mining methods, heterologous expression in different systems, the purification technologies applied to bacteriocins, and identification methods, as well as the antibacterial mechanism and applications in three different food systems. Bioinformatics improves the efficiency of bacteriocins mining. Bacteriocins can be heterologously expressed in different expression systems (e.g., Escherichia coli, Lactobacillus, and yeast). Ammonium sulfate precipitation, dialysis membrane, pH-mediated cell adsorption/desorption, solvent extraction, macroporous resin column, and chromatography are always used as purification methods for bacteriocins. The bacteriocins are identified through electrophoresis and mass spectrum. Cell envelope (e.g., cell permeabilization and pore formation) and inhibition of gene expression are common antibacterial mechanisms of bacteriocins. Bacteriocins can be added to protect meat products (e.g., beef and sausages), dairy products (e.g., cheese, milk, and yogurt), and vegetables and fruits (e.g., salad, apple juice, and soybean sprouts). The future research directions are also prospected.
Collapse
Affiliation(s)
- Yanlong Cui
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Lingli Luo
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Wang
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yingying Lu
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yanglei Yi
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuanyuan Shan
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Bianfang Liu
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuan Zhou
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Danielski GM, Evangelista AG, Luciano FB, de Macedo REF. Non-conventional cultures and metabolism-derived compounds for bioprotection of meat and meat products: a review. Crit Rev Food Sci Nutr 2020; 62:1105-1118. [DOI: 10.1080/10408398.2020.1835818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gabriela Maia Danielski
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
- Undergraduate Program in Agronomy, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | | | | | | |
Collapse
|
6
|
Du H, Zhou L, Lu Z, Bie X, Zhao H, Niu YD, Lu F. Transcriptomic and proteomic profiling response of methicillin-resistant Staphylococcus aureus (MRSA) to a novel bacteriocin, plantaricin GZ1-27 and its inhibition of biofilm formation. Appl Microbiol Biotechnol 2020; 104:7957-7970. [PMID: 32803295 DOI: 10.1007/s00253-020-10589-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/09/2020] [Accepted: 03/25/2020] [Indexed: 01/14/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has become a worrisome superbug, due to its wide distribution and multidrug resistance. To characterize effects of a newly identified plantaricin GZ1-27 on MRSA, transcriptomic and proteomic profiling of MRSA strain ATCC43300 was performed in response to sub-MIC (16 μg/mL) plantaricin GZ1-27 stress. In total, 1090 differentially expressed genes (padj < 0.05) and 418 differentially expressed proteins (fold change > 1.2, p < 0.05) were identified. Centralized protein expression clusters were predicted in biological functions (biofilm formation, DNA replication and repair, and heat-shock) and metabolic pathways (purine metabolism, amino acid metabolism, and biosynthesis of secondary metabolites). Moreover, a capacity of inhibition MRSA biofilm formation and killing biofilm cells were verified using crystal violet staining, scanning electron microscopy, and confocal laser-scanning microscopy. These findings yielded comprehensive new data regarding responses induced by plantaricin and could inform evidence-based methods to mitigate MRSA biofilm formation.
Collapse
Affiliation(s)
- Hechao Du
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Libang Zhou
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Yan D Niu
- Faculty of Veterinary Medicine, University of Calgary, Calgary, T2N 4Z6, Canada
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
7
|
Newstead LL, Varjonen K, Nuttall T, Paterson GK. Staphylococcal-Produced Bacteriocins and Antimicrobial Peptides: Their Potential as Alternative Treatments for Staphylococcus aureus Infections. Antibiotics (Basel) 2020; 9:antibiotics9020040. [PMID: 31973108 PMCID: PMC7168290 DOI: 10.3390/antibiotics9020040] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 12/05/2022] Open
Abstract
Staphylococcus aureus is an important pathogen of both humans and animals, implicated in a wide range of infections. The emergence of antibiotic resistance has resulted in S. aureus strains that are resistant to almost all available antibiotics, making treatment a clinical challenge. Development of novel antimicrobial approaches is now a priority worldwide. Bacteria produce a range of antimicrobial peptides; the most diverse of these being bacteriocins. Bacteriocins are ribosomally synthesised peptides, displaying potent antimicrobial activity usually against bacteria phylogenetically related to the producer strain. Several bacteriocins have been isolated from commensal coagulase-negative staphylococci, many of which display inhibitory activity against S. aureus in vitro and in vivo. The ability of these bacteriocins to target biofilm formation and their novel mechanisms of action with efficacy against antibiotic-resistant bacteria make them strong candidates as novel therapeutic antimicrobials. The use of genome-mining tools will help to advance identification and classification of bacteriocins. This review discusses the staphylococcal-derived antimicrobial peptides displaying promise as novel treatments for S. aureus infections.
Collapse
Affiliation(s)
- Logan L. Newstead
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK; (L.L.N.); (T.N.)
| | - Katarina Varjonen
- AniCura Djursjukhuset Albano, Rinkebyvägen 21A, 182 36 Danderyd, Sweden;
| | - Tim Nuttall
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK; (L.L.N.); (T.N.)
| | - Gavin K. Paterson
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK; (L.L.N.); (T.N.)
- Correspondence:
| |
Collapse
|
8
|
Kim SH, Park SH, Kim SS, Kang DH. Inactivation of Staphylococcus aureus Biofilms on Food Contact Surfaces by Superheated Steam Treatment. J Food Prot 2019; 82:1496-1500. [PMID: 31411506 DOI: 10.4315/0362-028x.jfp-18-572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The objective of this study was to compare the inactivation efficacy of saturated steam (SS) and superheated steam (SHS) on Staphylococcus aureus biofilms on food contact surfaces, including type 304 stainless steel coupons with No. 4 finish (STS No. 4), type 304 stainless steel coupons with 2B finish (STS 2B), high-density polyethylene (HDPE), and polypropylene (PP). In addition, the effects of the surface characteristics on the inactivation efficacy were evaluated. Biofilms were formed on each food contact coupon surface using a three-strain cocktail of S. aureus. Five-day-old biofilms on STS No. 4, STS 2B, HDPE, and PP coupons were treated with SS at 100°C and SHS at 125 and 150°C for 2, 4, 7, 10, 15, and 20 s. Among all coupon types, SHS was more effective than SS in inactivating the S. aureus biofilms. S. aureus biofilms on steel coupons were more susceptible to most SS and SHS treatments than the biofilms on plastic coupons. S. aureus biofilms on HDPE and PP coupons were reduced by 4.00 and 5.22 log CFU per coupon, respectively, after SS treatment (100°C) for 20 s. SS treatment for 20 s reduced the amount of S. aureus biofilm on STS No. 4 and STS 2B coupons to below the detection limit. With SHS treatment (150°C), S. aureus biofilms on HDPE and PP needed 15 s to be inactivated to below the detection limit, while steel coupons only needed 10 s. The results of this study suggest that SHS treatment has potential as a biofilm control intervention for the food industry.
Collapse
Affiliation(s)
- Soo-Hwan Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Sang-Hyun Park
- Department of Food Science and Technology, Kongju National University, Yesan, Chungnam 32439, Republic of Korea
| | - Sang-Soon Kim
- Department of Food Engineering, Dankook University, Cheonan, Chungnam 31116, Republic of Korea
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| |
Collapse
|