1
|
Tong W, Xu H, He P, Li Y, Zhang Y, Huang Z, Luo H, Yang Y, Li D, Zhao Z. Multifunctional Lactiplantibacillus plantarum SQ1 from Baijiu Daqu: Application of histamine degradation and probiotic potential in yogurt production. Food Res Int 2025; 203:115911. [PMID: 40022415 DOI: 10.1016/j.foodres.2025.115911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 03/03/2025]
Abstract
Yogurt in this study is a milk drink with probiotics added during the fermentation process and has a variety of ingredients. To identify microorganisms capable of efficiently degrading histamine, thereby enhancing yogurt's quality and safety. This study focused on screening Lactiplantibacillus plantarum (L. plantarum) from Baijiu Daqu (saccharification starter for Baijiu brewing), which exhibits histamine-reducing properties through biological characterization and molecular biology techniques. The results indicated that the strain has an optimal growth temperature of 37 °C, can survive within a pH range of 3 to 9, and demonstrates tolerance levels for sugar (4 % to 12 %) and salt (1 % to 7 %). Additionally, it possesses notable surface hydrophobicity and self-aggregation capabilities, along with robust survival rates in gastrointestinal fluids and bile salts. This strain also produces more than 40 flavor compounds, including trimethylpyrazine, pyrrole, and phenylglyoxal; its metabolites inhibit certain pathogenic bacteria, such as Escherichia coli (E. coli) and Pseudomonas putida (P. putida). Following co-fermentation with this bacterium in yogurt, there was a significant reduction in histamine levels-achieving a degradation rate of (41.74 ± 1.86)%. In the study, genes related to histamine degradation, such as the multicopper oxidase gene (cueO, EC: 1.16.3.4) and glyceraldehyde-3-phosphate dehydrogenase (gapA, EC: 1.2.1.12), were found to be present L. plantarum SQ1 by whole genome sequencing. This research provides technical support for reducing histamine concentrations in the manufacturing process of high-histamine fermented foods such as yogurt or aged vinegar, thereby reducing the risk of adverse reactions to consumers and laying the theoretical foundation for safer and healthier dairy production.
Collapse
Affiliation(s)
- Wenhua Tong
- School of Biological Engineering, Sichuan University of Science and Engineering, Sichuan Province, Yibin, Sichuan 644000, China; Key Laboratory of Liquor Making Biotechnology and Application, School of Biological Engineering, Sichuan University of Science and Engineering, Yibin, Sichuan 644000, China.
| | - Haoran Xu
- School of Biological Engineering, Sichuan University of Science and Engineering, Sichuan Province, Yibin, Sichuan 644000, China
| | - Ping He
- Shede Spirits Co., Ltd., Suining 629200, China
| | - Yutao Li
- Sichuan Luzhou Laojiao Co., Ltd., Luzhou, Sichuan 646000, China
| | - Yang Zhang
- Sichuan Luzhou Laojiao Co., Ltd., Luzhou, Sichuan 646000, China
| | - Zhijiu Huang
- Sichuan Luzhou Laojiao Co., Ltd., Luzhou, Sichuan 646000, China
| | - Huibo Luo
- School of Biological Engineering, Sichuan University of Science and Engineering, Sichuan Province, Yibin, Sichuan 644000, China; Key Laboratory of Liquor Making Biotechnology and Application, School of Biological Engineering, Sichuan University of Science and Engineering, Yibin, Sichuan 644000, China
| | - Ying Yang
- School of Biological Engineering, Sichuan University of Science and Engineering, Sichuan Province, Yibin, Sichuan 644000, China
| | - Dong Li
- School of Biological Engineering, Sichuan University of Science and Engineering, Sichuan Province, Yibin, Sichuan 644000, China
| | - Zhifeng Zhao
- School of Biological Engineering, Sichuan University of Science and Engineering, Sichuan Province, Yibin, Sichuan 644000, China; College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, China
| |
Collapse
|
2
|
Moradiyan Tehrani H, Goli M. Effects of pathogen diversity, farm type, and parity number on somatic cell profiles and histamine levels in milk and ultra-filtration white brined cheese from dairy cattle. Lebensm Wiss Technol 2025; 215:117277. [DOI: 10.1016/j.lwt.2024.117277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Fernández-Lodeiro C, González-Cabaleiro L, Vázquez-Iglesias L, Serrano-Pertierra E, Bodelón G, Carrera M, Blanco-López MC, Pérez-Juste J, Pastoriza-Santos I. Au@Ag Core-Shell Nanoparticles for Colorimetric and Surface-Enhanced Raman-Scattering-Based Multiplex Competitive Lateral Flow Immunoassay for the Simultaneous Detection of Histamine and Parvalbumin in Fish. ACS APPLIED NANO MATERIALS 2024; 7:498-508. [PMID: 38229662 PMCID: PMC10788866 DOI: 10.1021/acsanm.3c04696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024]
Abstract
Foodborne allergies and illnesses represent a major global health concern. In particular, fish can trigger life-threatening food allergic reactions and poisoning effects, mainly caused by the ingestion of parvalbumin toxin. Additionally, preformed histamine in less-than-fresh fish serves as a toxicological alert. Consequently, the analytical assessment of parvalbumin and histamine levels in fish becomes a critical public health safety measure. The multiplex detection of both analytes has emerged as an important issue. The analytical detection of parvalbumin and histamine requires different assays; while the determination of parvalbumin is commonly carried out by enzyme-linked immunosorbent assay, histamine is analyzed by high-performance liquid chromatography. In this study, we present an approach for multiplexing detection and quantification of trace amounts of parvalbumin and histamine in canned fish. This is achieved through a colorimetric and surface-enhanced Raman-scattering-based competitive lateral flow assay (SERS-LFIA) employing plasmonic nanoparticles. Two distinct SERS nanotags tailored for histamine or β-parvalbumin detection were synthesized. Initially, spherical 50 nm Au@Ag core-shell nanoparticles (Au@Ag NPs) were encoded with either rhodamine B isothiocyanate (RBITC) or malachite green isothiocyanate (MGITC). Subsequently, these nanoparticles were bioconjugated with anti-β-parvalbumin and antihistamine, forming the basis for our detection and quantification methodology. Additionally, our approach demonstrates the use of SERS-LFIA for the sensitive and multiplexed detection of parvalbumin and histamine on a single test line, paving the way for on-site detection employing portable Raman instruments.
Collapse
Affiliation(s)
- Carlos Fernández-Lodeiro
- CINBIO,
Universidade de Vigo, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Department
of Physical Chemistry, Universidade de Vigo, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
- Galicia
Sur Health Research Institute (IIS Galicia Sur), 36310 Vigo, Spain
| | - Lara González-Cabaleiro
- CINBIO,
Universidade de Vigo, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Department
of Physical Chemistry, Universidade de Vigo, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
- Galicia
Sur Health Research Institute (IIS Galicia Sur), 36310 Vigo, Spain
| | - Lorena Vázquez-Iglesias
- CINBIO,
Universidade de Vigo, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Department
of Physical Chemistry, Universidade de Vigo, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
- Galicia
Sur Health Research Institute (IIS Galicia Sur), 36310 Vigo, Spain
| | - Esther Serrano-Pertierra
- Department
of Biochemistry and Molecular Biology and Institute of Biotechnology
of Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - Gustavo Bodelón
- CINBIO,
Universidade de Vigo, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Department
of Functional Biology and Health Sciences, Universidade de Vigo, 36310 Vigo, Spain
| | - Mónica Carrera
- Department
of Food Technology, Spanish National Research Council, Marine Research Institute, 36208 Vigo, Spain
| | - María Carmen Blanco-López
- Department
of Physical and Analytical Chemistry and Institute of Biotechnology
of Asturias, University of Oviedo, c/Julián Clavería
8, 33006 Oviedo, Spain
| | - Jorge Pérez-Juste
- CINBIO,
Universidade de Vigo, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Department
of Physical Chemistry, Universidade de Vigo, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
- Galicia
Sur Health Research Institute (IIS Galicia Sur), 36310 Vigo, Spain
| | - Isabel Pastoriza-Santos
- CINBIO,
Universidade de Vigo, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Department
of Physical Chemistry, Universidade de Vigo, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
- Galicia
Sur Health Research Institute (IIS Galicia Sur), 36310 Vigo, Spain
| |
Collapse
|
4
|
Rodríguez-Núñez K, Cortés-Monroy A, Serey M, Ensari Y, Davari MD, Bernal C, Martinez R. Modulating Substrate Specificity of Rhizobium sp. Histamine Dehydrogenase through Protein Engineering for Food Quality Applications. Molecules 2023; 28:molecules28093748. [PMID: 37175158 PMCID: PMC10180351 DOI: 10.3390/molecules28093748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Histamine is a biogenic amine found in fish-derived and fermented food products with physiological relevance since its concentration is proportional to food spoilage and health risk for sensitive consumers. There are various analytical methods for histamine quantification from food samples; however, a simple and quick enzymatic detection and quantification method is highly desirable. Histamine dehydrogenase (HDH) is a candidate for enzymatic histamine detection; however, other biogenic amines can change its activity or produce false positive results with an observed substrate inhibition at higher concentrations. In this work, we studied the effect of site saturation mutagenesis in Rhizobium sp. Histamine Dehydrogenase (Rsp HDH) in nine amino acid positions selected through structural alignment analysis, substrate docking, and proximity to the proposed histamine-binding site. The resulting libraries were screened for histamine and agmatine activity. Variants from two libraries (positions 72 and 110) showed improved histamine/agmatine activity ratio, decreased substrate inhibition, and maintained thermal resistance. In addition, activity characterization of the identified Phe72Thr and Asn110Val HDH variants showed a clear substrate inhibition curve for histamine and modified kinetic parameters. The observed maximum velocity (Vmax) increased for variant Phe72Thr at the cost of an increased value for the Michaelis-Menten constant (Km) for histamine. The increased Km value, decreased substrate inhibition, and biogenic amine interference observed for variant Phe72Thr support a tradeoff between substrate affinity and substrate inhibition in the catalytic mechanism of HDHs. Considering this tradeoff for future enzyme engineering of HDH could lead to breakthroughs in performance increases and understanding of this enzyme class.
Collapse
Affiliation(s)
- Karen Rodríguez-Núñez
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1720010, Chile
| | - Alejandra Cortés-Monroy
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1720010, Chile
| | - Marcela Serey
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1720010, Chile
| | - Yunus Ensari
- Department of Bioengineering, Faculty of Engineering and Architecture, Kafkas University, Kars 36000, Turkey
| | - Mehdi D Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle, Germany
| | - Claudia Bernal
- Instituto de Investigación Multidisciplinaria en Ciencia y Tecnología, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1720010, Chile
| | - Ronny Martinez
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1720010, Chile
| |
Collapse
|
5
|
Umeda K, Tachikawa M, Azuma Y, Furuzono T. In vitro evaluation of antibacterial nanomaterial-induced anaphylactoid reaction for indwelling catheters. RENAL REPLACEMENT THERAPY 2022. [DOI: 10.1186/s41100-022-00424-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
To prevent tunnel infection of indwelling catheters, impregnation with antiseptics or antibiotics is effective. However, 13 patients using chlorhexidine–silver sulfadiazine-impregnated catheters experienced serious anaphylactic shock in Japan. Thus, it is necessary to select a suitable evaluation method for allergic reactions and develop a novel antibacterial coating material that does not cause anaphylactic reaction.
Methods
Two types of highly dispersible and antibacterial nanoparticles—fluorine (F)-doped hydroxyapatite (HAp) and zinc (Zn)-doped HAp—were tested using of the system and compared with compound 48/80 (c48/80) as a histamine releaser and chlorhexidine gluconate (CHG) as an anaphylactic inducer.
Results
The histamine concentrations secreted from HMC-1 cells remained mostly the same even with the addition of F-HAp and Zn-HAp. On the contrary, the levels of the chemical mediators from the cells by the addition of F-HAp and Zn-HAp were significantly lower than those of only c48/80 and CHG without the addition of HAp.
Conclusions
The assay was a well-evaluated method for quantifying histamine concentrations released from HMC-1 cells. Our study induced HMC-1 cells accompanied with and without the nanomaterials; the potential of F-HAp and Zn-HAp to induce allergic reactions was found to be quite low. Therefore, the antibacterial nanomaterials are expected to hardly induce anaphylactoid reactions.
Collapse
|
6
|
Wang J, Qu Y, Liu Z, Zhou H. Formation, Analytical Methods, Change Tendency, and Control Strategies of Biogenic Amines in Canned Aquatic Products: A Systematic Review. J Food Prot 2021; 84:2020-2036. [PMID: 34233360 DOI: 10.4315/jfp-21-120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/02/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Biogenic amines (BAs) are organic compounds with low molecular weight and can be used as indicators of the quality and safety of canned aquatic products during processing and storage. However, excess of these amines can cause foodborne poisoning. Therefore, the determination, analysis, and prevention of BAs are of great importance. This article focuses on the sources, formation, and pretreatment methods, as well as analytical techniques, change tendency, and control techniques of BAs, with the aim of promoting more appropriate analysis of canned aquatic products to provide a reference for the food industries. HIGHLIGHTS
Collapse
Affiliation(s)
- Jingyu Wang
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Ring Road, Shanghai 200120, People's Republic of China
| | - Yinghong Qu
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Ring Road, Shanghai 200120, People's Republic of China
| | - Zhidong Liu
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affair, East China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai 200090, People's Republic of China
| | - Huimin Zhou
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Ring Road, Shanghai 200120, People's Republic of China
| |
Collapse
|
7
|
Kouti E, Tsiasioti A, Zacharis CK, Tzanavaras PD. Specific determination of histamine in cheese and cured meat products by ion chromatography coupled to fluorimetric detection. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|