1
|
Linzner N, Bartel A, Schumacher V, Grau JH, Wyler E, Preuß H, Garske S, Bitzegeio J, Kirst EB, Liere K, Hoppe S, Borodina TA, Altmüller J, Landthaler M, Meixner M, Sagebiel D, Böckelmann U. Effective Inhibitor Removal from Wastewater Samples Increases Sensitivity of RT-dPCR and Sequencing Analyses and Enhances the Stability of Wastewater-Based Surveillance. Microorganisms 2024; 12:2475. [PMID: 39770678 PMCID: PMC11728302 DOI: 10.3390/microorganisms12122475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Wastewater-based surveillance (WBS) is a proven tool for monitoring population-level infection events. Wastewater contains high concentrations of inhibitors, which contaminate the total nucleic acids (TNA) extracted from these samples. We found that TNA extracts from raw influent of Berlin wastewater treatment plants contained highly variable amounts of inhibitors that impaired molecular analyses like dPCR and next-generation sequencing (NGS). By using dilutions, we were able to detect inhibitory effects. To enhance WBS sensitivity and stability, we applied a combination of PCR inhibitor removal and TNA dilution (PIR+D). This approach led to a 26-fold increase in measured SARS-CoV-2 concentrations, practically reducing the detection limit. Additionally, we observed a substantial increase in the stability of the time series. We define suitable stability as a mean absolute error (MAE) below 0.1 log10 copies/L and a geometric mean relative absolute error (GMRAE) below 26%. Using PIR+D, the MAE could be reduced from 0.219 to 0.097 and the GMRAE from 65.5% to 26.0%, and even further in real-world WBS. Furthermore, PIR+D improved SARS-CoV-2 genome alignment and coverage in amplicon-based NGS for low to medium concentrations. In conclusion, we strongly recommend both the monitoring and removal of inhibitors from samples for WBS.
Collapse
Affiliation(s)
- Nico Linzner
- Laboratory of Berliner Wasserbetriebe, Berliner Wasserbetriebe, 13629 Berlin, Germany (U.B.)
| | - Alexander Bartel
- Unit for Surveillance and Epidemiology of Infectious Diseases, State Office for Health and Social Affairs (SOHSA), 10559 Berlin, Germany
| | - Vera Schumacher
- Laboratory of Berliner Wasserbetriebe, Berliner Wasserbetriebe, 13629 Berlin, Germany (U.B.)
| | | | - Emanuel Wyler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), 10115 Berlin, Germany
| | - Henrike Preuß
- Laboratory of Berliner Wasserbetriebe, Berliner Wasserbetriebe, 13629 Berlin, Germany (U.B.)
| | - Sonja Garske
- Unit for Surveillance and Epidemiology of Infectious Diseases, State Office for Health and Social Affairs (SOHSA), 10559 Berlin, Germany
| | - Julia Bitzegeio
- Unit for Surveillance and Epidemiology of Infectious Diseases, State Office for Health and Social Affairs (SOHSA), 10559 Berlin, Germany
| | - Elisabeth Barbara Kirst
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), 10115 Berlin, Germany
- Genomics Technology Platform, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
| | - Karsten Liere
- Amedes Medizinische Dienstleistungen GmbH, 37081 Göttingen, Germany
| | - Sebastian Hoppe
- Unit for Surveillance and Epidemiology of Infectious Diseases, State Office for Health and Social Affairs (SOHSA), 10559 Berlin, Germany
| | - Tatiana A. Borodina
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), 10115 Berlin, Germany
- Genomics Technology Platform, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
| | - Janine Altmüller
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), 10115 Berlin, Germany
- Genomics Technology Platform, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
| | - Markus Landthaler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), 10115 Berlin, Germany
- Institut für Biologie, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Martin Meixner
- Amedes Medizinische Dienstleistungen GmbH, 37081 Göttingen, Germany
| | - Daniel Sagebiel
- Unit for Surveillance and Epidemiology of Infectious Diseases, State Office for Health and Social Affairs (SOHSA), 10559 Berlin, Germany
| | - Uta Böckelmann
- Laboratory of Berliner Wasserbetriebe, Berliner Wasserbetriebe, 13629 Berlin, Germany (U.B.)
| |
Collapse
|
2
|
Trudel-Ferland M, Collard MÈ, Goulet-Beaulieu V, Jubinville E, Hamon F, Jean J. Evaluation of a new automated viral RNA extraction platform for hepatitis A virus and human norovirus in testing of berries, lettuce, and oysters. Int J Food Microbiol 2024; 416:110664. [PMID: 38492524 DOI: 10.1016/j.ijfoodmicro.2024.110664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
Fruits, vegetables, and shellfish are often associated with outbreaks of illness caused particularly by human norovirus (HuNoV) and hepatitis A virus (HAV), the leading causative agents of foodborne illness worldwide. The aim of this study was to evaluate a new automated nucleic acid extraction platform (EGENE-UP EASYPREP) for enteric viruses in several at-risk food matrices and to test its limit of detection in comparison to a semi-automated method (EGENE-UP) using Boom methodology for nucleic acid extraction as suggested in the reference method ISO 15216-2:2019. Fresh and frozen raspberries, frozen blackberries, romaine lettuce and oyster digestive glands were artificially contaminated with HAV, HuNoV GII.4 or HuNoV GI.7 at 102, 103 or 104 genome copies/sample. Virus was then recovered from the food matrix using the ISO method. Viral RNA extracted from frozen berry samples by the automated system was purified on a column for additional removal of RT-qPCR inhibitors. For fresh raspberry, oysters, and romaine lettuce, the two extraction platforms were deemed equivalent. For frozen raspberry, the automated platform appeared to be more efficient for viral recovery, particularly for HAV and HuNoV GI at lower concentrations. With frozen blackberries, the two platforms may be considered equivalent for all targeted viruses. However, the automated method led to less sample-associated inhibition of the PCR, 56.5 % of samples versus 95.0 % for the semi-automated. We thus found that the automated extraction can be performed easily by users while obtaining equivalent or even superior results to the ISO 15216-2:2019 method, and therefore appears to be suitable for routine sanitary monitoring in food processing and for tracing outbreaks of illness.
Collapse
Affiliation(s)
- Mathilde Trudel-Ferland
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | - Marie-Ève Collard
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | - Valérie Goulet-Beaulieu
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | - Eric Jubinville
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | | | - Julie Jean
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
3
|
Arida J, Shipley A, Almeria S. Molecular Detection of Cyclospora cayetanensis in Two Main Types of Farm Soil Using Real-Time PCR Assays and Method Modification for Commercial Potting Mix. Microorganisms 2023; 11:1506. [PMID: 37375008 DOI: 10.3390/microorganisms11061506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Cyclospora cayetanensis is a foodborne protozoan parasite that causes outbreaks of diarrheal illness (cyclosporiasis) with clear seasonality worldwide. In the environment, C. cayetanensis oocysts are very robust, and contact with contaminated soil may serve as an important vehicle in the transmission of this organism, and it is considered a risk factor for this infection. The present study evaluated a flotation concentration method, previously shown to provide the best detection results when compared with DNA isolation directly from soil samples, in two main types of farm soil, silt loam soil and sandy clay loam, as well as in commercial potting mix samples inoculated with different numbers of C. cayetanensis oocysts. The flotation method was able to detect as few as 10 oocysts in 10 g of either type of farm soil without modifications, but needed an extra wash and samples of reduced size for the processing of the commercial potting mix to be able to detect 20 oocysts/5 g. A recently modified real-time PCR method for the detection of C. cayetanensis based on a mitochondrial gene target was also evaluated using selected samples of each type of soil. This comparative study confirmed that the concentration of oocysts in soil samples by flotation in high-density sucrose solutions is a sensitive method that can detect low numbers of oocysts in different types of soil.
Collapse
Affiliation(s)
- Joseph Arida
- Office of Applied Research and Safety Assessment (OARSA), Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708, USA
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), University of Maryland, College Park, MD 20742, USA
| | - Alicia Shipley
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Sonia Almeria
- Office of Applied Research and Safety Assessment (OARSA), Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708, USA
| |
Collapse
|
4
|
Shipley A, Arida J, Almeria S. Comparative Evaluation of an Easy Laboratory Method for the Concentration of Oocysts and Commercial DNA Isolation Kits for the Molecular Detection of Cyclospora cayetanensis in Silt Loam Soil Samples. Microorganisms 2022; 10:microorganisms10071431. [PMID: 35889150 PMCID: PMC9322252 DOI: 10.3390/microorganisms10071431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 01/25/2023] Open
Abstract
Cyclospora cayetanensis is a protozoan parasite that causes foodborne outbreaks of diarrheal illness (cyclosporiasis) worldwide. Contact with soil may be an important mode of transmission for C. cayetanensis and could play a role in the contamination of foods. However, there is a scarcity of detection methods and studies for C. cayetanensis in soil. Traditional parasitology concentration methods can be useful for the detection of C. cayetanensis, as found for other protozoa parasites of similar size. The present study evaluated a concentration method using flotation in saturated sucrose solution, subsequent DNA template preparation and qPCR following the Bacteriological Analytical Manual (BAM) Chapter 19b method. The proposed flotation method was compared to three commercial DNA isolation kits (Fast DNATM 50 mL SPIN kit for soil (MP Biomedicals, Irvine, CA, USA), Quick-DNATM Fecal/Soil Microbe Midiprep kit (Zymo Research, Irvine, CA, USA) and DNeasy® PowerMax® Soil Kit (Qiagen, Hilden, Germany)) for the isolation and detection of DNA from experimentally seeded C. cayetanensis soil samples (5−10 g with 100 oocysts). Control unseeded samples were all negative in all methods. Significantly lower cycle threshold values (CT) were observed in the 100 oocyst C. cayetanensis samples processed via the flotation method than those processed with each of the commercial DNA isolation kits evaluated (p < 0.05), indicating higher recovery of the target DNA with flotation. All samples seeded with 100 oocysts (n = 5) were positive to the presence of the parasite by the flotation method, and no inhibition was observed in any of the processed samples. Linearity of detection of the flotation method was observed in samples seeded with different levels of oocysts, and the method was able to detect as few as 10 oocysts in 10 g of soil samples (limit of detection 1 oocyst/g). This comparative study showed that the concentration of oocysts in soil samples by flotation in high-density sucrose solutions is an easy, low-cost, and sensitive method that could be implemented for the detection of C. cayetanensis in environmental soil samples. The flotation method would be useful to identify environmental sources of C. cayetanensis contamination, persistence of the parasite in the soil and the role of soil in the transmission of C. cayetanensis.
Collapse
Affiliation(s)
- Alicia Shipley
- Office of Applied Research and Safety Assessment (OARSA), Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708, USA; (A.S.); (J.A.)
| | - Joseph Arida
- Office of Applied Research and Safety Assessment (OARSA), Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708, USA; (A.S.); (J.A.)
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), University of Maryland, College Park, MD 20742, USA
| | - Sonia Almeria
- Office of Applied Research and Safety Assessment (OARSA), Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708, USA; (A.S.); (J.A.)
- Correspondence:
| |
Collapse
|
5
|
Bartosova B, Koudela B, Slana I. Detection of Cyclospora cayetanensis, Echinococcus multilocularis, Toxocara spp. and microsporidia in fresh produce using molecular methods: - A review. Food Waterborne Parasitol 2021; 23:e00124. [PMID: 34169159 PMCID: PMC8209397 DOI: 10.1016/j.fawpar.2021.e00124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 10/27/2022] Open
Abstract
The current trend for a healthy lifestyle corresponds with a healthy diet, which is associated with regular and frequent consumption of raw fruit and vegetables. However, consumption of ready-to-eat (RTE) food without heat treatment or sufficient washing may pose a risk to consumers. Among the well-known protozoan parasites associated with RTE food and water are Cryptosporidium spp., Giardia duodenalis and Toxoplasma gondii. These belong among prioritized parasitic pathogens, as they are associated with numerous disease outbreaks in humans all around the world. Nevertheless, other parasitic agents such as Cyclospora cayetanensis, Toxocara cati, Toxocara canis, Echinococcus multilocularis and zoonotic microsporidia should not be neglected. Although these selected parasites belong to phylogenetically diverse groups, they have common characteristics associated with fresh produce and each of them poses a health risk to humans. Ensuring healthy food is produced requires the standartization of laboratory methods for the detection of parasitic agents. This article reviews the molecular methods currently used in laboratories for detection of Cyclospora cayetanensis, Toxocara cati, Toxocara canis, Echinococcus multilocularis and zoonotic microsporidia in fresh produce.
Collapse
Affiliation(s)
- B. Bartosova
- Veterinary Research Institute, Hudcova 296/70, Brno 621 00, Czech Republic
- Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences, Palackého 1-3, Brno 612 42, Czech Republic
| | - B. Koudela
- Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences, Palackého 1-3, Brno 612 42, Czech Republic
| | - I. Slana
- Veterinary Research Institute, Hudcova 296/70, Brno 621 00, Czech Republic
| |
Collapse
|
6
|
Detection of Cyclospora cayetanensis on bagged pre-cut salad mixes within their shelf-life and after sell by date by the U.S. food and drug administration validated method. Food Microbiol 2021; 98:103802. [PMID: 33875194 DOI: 10.1016/j.fm.2021.103802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/06/2021] [Accepted: 04/01/2021] [Indexed: 11/21/2022]
Abstract
Recently, outbreaks of Cyclospora cayetanensis in the U.S. were linked to the consumption of a variety of salads containing romaine and/or iceberg lettuce, carrots and/or red cabbage. The Bacteriological Analytical Manual (BAM) Chapter 19b method was validated for the detection of C. cayetanensis in carrots, cabbage and romaine lettuce, but has not been previously evaluated in ready-to-eat (RTE) salad mixes. In addition, the only samples available for traceback investigations are sometimes leftovers in bad conditions. This study evaluated the validated BAM method for detection of C. cayetanensis in two different RTE mixed salads (mix 1: romaine and iceberg lettuces, carrots, and red cabbage and mix 2: romaine and iceberg lettuces, carrots, red cabbage, radish, and pea pods) in good condition and after their sell by date. Individual samples (25 g) were seeded with five and 200 C. cayetanensis oocysts. Unseeded produce was used as negative control. The method included washing of the produce, concentration and extraction of C. cayetanensis DNA and molecular detection of C. cayetanensis 18 S rRNA gene. As few as five oocysts were detected in both fresh and after sell by date mix salads. All unseeded samples were negative, and all samples of both salad types seeded with 200 oocysts were positive. In samples seeded with 200 oocysts, average 18 S rRNA C. cayetanensis CT values were significantly higher in fresh salad mix 1 compared to fresh salad mix 2; CT values were significantly higher in the after sell by date salads compared to their respective fresh mixes (p < 0.05). In conclusion, the BAM method was able to detect as few as five oocysts even in after sell by date RTE mix salads. However, the differences in detection observed, highlight the importance of evaluating the performance of the validated C. cayetanensis detection method in different food matrices and conditions, in advance for future outbreak investigations.
Collapse
|