1
|
Zapata-Sifuentes M, Quispe-Salcedo A, Watanabe T, Kawase T, Ohshima H. Effect of leukocyte and platelet-rich plasma on osseointegration after implant placement in mouse maxilla. Regen Ther 2024; 26:741-748. [PMID: 39290631 PMCID: PMC11406024 DOI: 10.1016/j.reth.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/26/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Osseointegration, the direct contact between an implant and bone, can be achieved by direct and/or indirect osteogenesis. Platelet-rich plasma accelerates tissue regeneration, wound healing, and osseointegration. This study aimed to analyze the effects of leukocyte and platelet-rich plasma (L-PRP) on direct and indirect osteogenesis after implant placement in a mouse maxilla. Methods Blood was collected from the tail vein of 4-8-week-old male ICR mice and L-PRP was obtained after double-spin cycle centrifugation. After the right upper first molars of 4-week-old ICR mice were extracted while under deep anesthesia, the alveolar sockets were prepared with a drill, and titanium implants blasted with hydroxyapatite/β-tricalcium phosphate were placed into the cavity filled with 1.5 μL of L-PRP. Samples were collected from the animals 3-28 days after implantation, and immunohistochemistry for osteopontin, Ki67 (cell proliferation marker), cathepsin-K (osteoclast marker), and osteonectin (osteoblast marker) was performed. Results Cell proliferation was significantly higher in the L-PRP group than in the control group on postoperative days 3 and 5. The activities of osteoclast-lineage cells and osteoblasts increased significantly on day 5 in the L-PRP group, indicating that L-PRP evoked an active cellular response. Indirect osteogenesis was significantly higher on days 7, 14, and 28, and the osseointegration rate was significantly higher on day 28 in the L-PRP group compared with the control group. Conclusions L-PRP enhances osseointegration by promoting mesenchymal cell proliferation, osteoclastic and osteoblastic activities, and indirect osteogenesis.
Collapse
Affiliation(s)
- Mauricio Zapata-Sifuentes
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Angela Quispe-Salcedo
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Taisuke Watanabe
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomoyuki Kawase
- Division of Oral Bioengineering, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
2
|
Saleh Hasani Jebelli M, Yari A, Nikparto N, Cheperli S, Asadi A, Darehdor AA, Nezaminia S, Dortaj D, Hasani Mehraban S, Hakim LK. Tissue engineering innovations to enhance osseointegration in immediate dental implant loading: A narrative review. Cell Biochem Funct 2024; 42:e3974. [PMID: 38491807 DOI: 10.1002/cbf.3974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
The demand for efficient and accelerated osseointegration in dental implantology has led to the exploration of innovative tissue engineering strategies. Immediate implant loading reduces treatment duration and necessitates robust osseointegration to ensure long-term implant success. This review article discusses the current studies of tissue engineering innovations for enhancing osseointegration in immediate dental implant loading in the recent decade. Keywords "tissue engineering," "osseointegration," "immediate implant loading," and related terms were systematically searched. The review highlights the potential of bioactive materials and growth factor delivery systems in promoting osteogenic activity and accelerating bone regeneration. The in vivo experiment demonstrates significantly improved osseointegration in the experimental group compared to traditional immediate loading techniques, as evidenced by histological analyses and biomechanical assessments. It is possible to revolutionize the treatment outcomes and patient satisfaction in dental implants by integrating bioactive materials and growth factors.
Collapse
Affiliation(s)
| | - Amir Yari
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kashan University of Medical Sciences, Kashan, Iran
| | - Nariman Nikparto
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Amirali Asadi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Arabi Darehdor
- Oral and Maxillofacial Surgeon, Department of Oral and Maxillofacial Surgery, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | - Sayna Nezaminia
- Oral and Maxillofacial Surgeon, Department of Oral and Maxillofacial Surgery, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | - Dorara Dortaj
- Operative Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Hasani Mehraban
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Lotfollah Kamali Hakim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Role of Stem Cells in Augmenting Dental Implant Osseointegration: A Systematic Review. COATINGS 2021. [DOI: 10.3390/coatings11091035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dental implants are a widely used treatment modality for oral rehabilitation. Implant failures can be a result of many factors, with poor osseointegration being the main culprit. The present systematic review aimed to assess the effect of stem cells on the osseointegration of dental implants. An electronic search of the MEDLINE, LILACS, and EMBASE databases was conducted. We examined quantitative preclinical studies that reported on the effect of mesenchymal stem cells on bone healing after implant insertion. Eighteen studies that fulfilled the inclusion criteria were included. Various surface modification strategies, sites of placement, and cell origins were analyzed. The majority of the selected studies showed a high risk of bias, indicating that caution must be exercised in their interpretation. All the included studies reported that the stem cells used with graft material and scaffolds promoted osseointegration with higher levels of new bone formation. The mesenchymal cells attached to the implant surface facilitated the expression of bio-functionalized biomaterial surfaces, to boost bone formation and osseointegration at the bone–implant interfaces. There was a promotion of osteogenic differentiation of human mesenchymal cells and osseointegration of biomaterial implants, both in vitro and in vivo. These results highlight the significance of biomodified implant surfaces that can enhance osseointegration. These innovations can improve the stability and success rate of the implants used for oral rehabilitation.
Collapse
|
4
|
Bhandi S, Alkahtani A, Mashyakhy M, Abumelha AS, Albar NHM, Renugalakshmi A, Alkahtany MF, Robaian A, Almeslet AS, Patil VR, Varadarajan S, Balaji TM, Reda R, Testarelli L, Patil S. Effect of Ascorbic Acid on Differentiation, Secretome and Stemness of Stem Cells from Human Exfoliated Deciduous Tooth (SHEDs). J Pers Med 2021; 11:jpm11070589. [PMID: 34206203 PMCID: PMC8304986 DOI: 10.3390/jpm11070589] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 12/23/2022] Open
Abstract
Stem cells from human exfoliated deciduous teeth (SHEDs) are considered a type of mesenchymal stem cells (MSCs) because of their unique origin from the neural crest. SHEDs can self-renewal and multi-lineage differentiation with the ability to differentiate into odontoblasts, osteoblast, chondrocytes, neuronal cells, hepatocytes, adipocytes, etc. They are emerging as an ideal source of MSCs because of their easy availability and extraordinary cell number. Ascorbic acid, or vitamin C, has many cell-based applications, such as bone regeneration, osteoblastic differentiation, or extracellular matrix production. It also impacts stem cell plasticity and the ability to sustain pluripotent activity. In this study, we evaluate the effects of ascorbic acid on stemness, paracrine secretion, and differentiation into osteoblast, chondrocytes, and adipocytes. SHEDs displayed enhanced multifaceted activity, which may have applications in regenerative therapy.
Collapse
Affiliation(s)
- Shilpa Bhandi
- Department of Restorative Dental Sciences, College of Dentistry, Jazan University, Jazan 45412, Saudi Arabia; (S.B.); (M.M.); (N.H.M.A.)
| | - Ahmed Alkahtani
- Department of Restorative Dental Sciences, Division of Endodontics, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (M.F.A.)
| | - Mohammed Mashyakhy
- Department of Restorative Dental Sciences, College of Dentistry, Jazan University, Jazan 45412, Saudi Arabia; (S.B.); (M.M.); (N.H.M.A.)
| | - Abdulaziz S. Abumelha
- Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia;
| | - Nassreen Hassan Mohammad Albar
- Department of Restorative Dental Sciences, College of Dentistry, Jazan University, Jazan 45412, Saudi Arabia; (S.B.); (M.M.); (N.H.M.A.)
| | - Apathsakayan Renugalakshmi
- Department of Preventive Dental Sciences, Pedodontics Division, College of Dentistry, Jazan University, Jazan 45412, Saudi Arabia;
| | - Mazen F. Alkahtany
- Department of Restorative Dental Sciences, Division of Endodontics, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (M.F.A.)
| | - Ali Robaian
- Department of Conservative Dental Sciences, College of Dentistry, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| | - Asma Saleh Almeslet
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Riyadh Elm University, Riyadh 12611, Saudi Arabia;
| | | | - Saranya Varadarajan
- Department of Oral Pathology and Microbiology, Sri Venkateswara Dental College and Hospital, Chennai 600130, India;
| | - Thodur Madapusi Balaji
- Department of Periodontology, Tagore Dental College and Hospital, Chennai 600127, India;
| | - Rodolfo Reda
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy; (R.R.); (L.T.)
| | - Luca Testarelli
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy; (R.R.); (L.T.)
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan 45412, Saudi Arabia
- Correspondence:
| |
Collapse
|
5
|
Spongostan ™ Leads to Increased Regeneration of a Rat Calvarial Critical Size Defect Compared to NanoBone ® and Actifuse. MATERIALS 2021; 14:ma14081961. [PMID: 33919825 PMCID: PMC8070843 DOI: 10.3390/ma14081961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022]
Abstract
Bone substitute materials are becoming increasingly important in oral and maxillofacial surgery. Reconstruction of critical size bone defects is still challenging for surgeons. Here, we compared the clinically applied organic bone substitute materials NanoBone® (nanocrystalline hydroxyapatite and nanostructured silica gel; n = 5) and Actifuse (calcium phosphate with silicate substitution; n = 5) with natural collagen-based Spongostan™ (hardened pork gelatin containing formalin and lauryl alcohol; n = 5) in bilateral rat critical-size defects (5 mm diameter). On topological level, NanoBone is known to harbour nanopores of about 20 nm diameter, while Actifuse comprises micropores of 200–500 µm. Spongostan™, which is clinically applied as a haemostatic agent, combines in its wet form both nano- and microporous topological features by comprising 60.66 ± 24.48 μm micropores accompanied by nanopores of 32.97 ± 1.41 nm diameter. Micro-computed tomography (µCT) used for evaluation 30 days after surgery revealed a significant increase in bone volume by all three bone substitute materials in comparison to the untreated controls. Clearly visual was the closure of trepanation in all treated groups, but granular appearance of NanoBone® and Actifuse with less closure at the margins of the burr holes. In contrast, transplantion of Spongostan™ lead to complete filling of the burr hole with the highest bone volume of 7.98 ccm and the highest bone mineral density compared to all other groups. In summary, transplantation of Spongostan™ resulted in increased regeneration of a rat calvarial critical size defect compared to NanoBone and Actifuse, suggesting the distinct nano- and microtopography of wet Spongostan™ to account for this superior regenerative capacity. Since Spongostan™ is a clinically approved product used primarily for haemostasis, it may represent an interesting alternative in the reconstruction of defects in the maxillary region.
Collapse
|