1
|
Bullivant J, Sen A, Page J, Graham RJ, Jungbluth H, Schara-Schmidt U, Lynch O, Bönnemann C, Hollander AD, Lennox A, Moat D, Saegert C, Amburgey K, Buj-Bello A, Dowling JJ, Marini-Bettolo C. The myotubular and centronuclear myopathy patient registry: a multifunctional tool for translational research. Neuromuscul Disord 2024; 35:42-52. [PMID: 38061948 DOI: 10.1016/j.nmd.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/15/2023] [Accepted: 10/23/2023] [Indexed: 02/09/2024]
Abstract
The Myotubular and Centronuclear Myopathy Registry is an international research database containing key longitudinal data on a diverse and growing cohort of individuals affected by this group of rare and ultra-rare neuromuscular conditions. It can inform and support all areas of translational research including epidemiological and natural history studies, clinical trial feasibility planning, recruitment for clinical trials or other research studies, stand-alone clinical studies, standards of care development, and provision of real-world evidence data. For ten years, it has also served as a valuable communications tool and provided a link between the scientific and patient communities. With the anticipated advent of disease-modifying therapies for these conditions, the registry is a key resource for the generation of post-authorisation data for regulatory decision-making, real world evidence, and patient-reported outcome measures. In this paper we present some key data from the current 444 registered individuals with the following genotype split: MTM1 n=270, DNM2 n=42, BIN1 n=4, TTN n=4, RYR1 n=12, other n=4, unknown n=108. The data presented are consistent with the current literature and the common understanding of a strong genotype/phenotype correlations in CNM, most notably the data supports the current knowledge that XLMTM is typically the most severe form of CNM. Additionally, we outline the ways in which the registry supports research, and, more generally, the importance of continuous investment and development to maintain the relevance of registries for all stakeholders. Further information on the registry and contact details are available on the registry website at www.mtmcnmregistry.org.
Collapse
Affiliation(s)
- Joanne Bullivant
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Anando Sen
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Jess Page
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Robert J Graham
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, United States
| | - Heinz Jungbluth
- Department of Paediatric Neurology - Neuromuscular Service, Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, London, United Kingdom
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, University of Duisburg-Essen, Essen, Germany
| | | | - Carsten Bönnemann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | | | | | - Dionne Moat
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | - Kimberly Amburgey
- Division of Neurology, Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, Canada
| | - Ana Buj-Bello
- Genethon, Evry 91000, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry 91000, France
| | - James J Dowling
- Division of Neurology, Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, Canada
| | - Chiara Marini-Bettolo
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
2
|
Shahidi B, Yoo A, Farnsworth C, Newton PO, Ward SR. Paraspinal muscle morphology and composition in adolescent idiopathic scoliosis: A histological analysis. JOR Spine 2021; 4:e1169. [PMID: 34611591 PMCID: PMC8479518 DOI: 10.1002/jsp2.1169] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/02/2021] [Accepted: 08/21/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Adolescent idiopathic scoliosis (AIS) is a condition resulting in spinal deformity and tissue adaptation of the paraspinal muscles. Although prior studies have demonstrated asymmetries in fiber type and other energetic features of muscle on the concave side of the curve, muscle morphology, architecture, and composition have not been evaluated. Therefore, the purpose of this study was to compare differences in paraspinal muscle microarchitecture and composition between concave and convex sides of a scoliotic curve in individuals with AIS. METHODS Paraspinal muscle biopsies were obtained at the apex of the scoliotic curve in 29 individuals with AIS undergoing surgical deformity correction. Histological assays were performed to quantify fiber size, evidence of muscle degeneration and regeneration, and tissue composition (proportion of muscle, collagen, and fat). Differences between contralateral muscle samples were compared using two-tailed paired Student's t tests, and relationships between clinical characteristics (age and curve severity) and muscle characteristics were investigated using Pearson correlations. RESULTS Muscle fibers were significantly larger on the convex side of the curve apex (P = .001), but were lower than literature-based norms for healthy paraspinal muscle. There were no differences in amount of degeneration/regeneration (P = .490) or the proportion of muscle and collagen (P > .350) between the concave and convex sides, but high levels of collagen were observed. There was a trend toward higher fat content on the concave side (P = .074). Larger fiber size asymmetries were associated with greater age (r = .43, P = .046), and trended toward an association with greater curve severity (r = .40, P = .069). CONCLUSIONS This study demonstrates that although muscle fibers are larger on the convex side of the scoliotic curve in AIS, muscles on both sides are atrophic compared to non-scoliotic individuals, and demonstrate levels of collagen similar to severe degenerative spinal pathologies. These findings provide insight into biological maladaptations occurring in paraspinal muscle in the presence of AIS.
Collapse
Affiliation(s)
- Bahar Shahidi
- Department of Orthopaedic SurgeryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Andrew Yoo
- Department of Orthopaedic SurgeryUniversity of California San DiegoLa JollaCaliforniaUSA
| | | | - Peter O. Newton
- Department of Orthopaedic SurgeryUniversity of California San DiegoLa JollaCaliforniaUSA
- Rady Children's HospitalSan DiegoCaliforniaUSA
| | - Samuel R. Ward
- Department of Orthopaedic SurgeryUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
3
|
Raja SA, Shah STA, Tariq A, Bibi N, Sughra K, Yousuf A, Khawaja A, Nawaz M, Mehmood A, Khan MJ, Hussain A. Caveolin-1 and dynamin-2 overexpression is associated with the progression of bladder cancer. Oncol Lett 2019; 18:219-226. [PMID: 31289491 DOI: 10.3892/ol.2019.10310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 04/03/2019] [Indexed: 02/01/2023] Open
Abstract
Caveolae-mediated endocytosis regulates cell adhesion and growth in an anchorage-dependent manner. Studies of the endocytic function of caveolae have suggested a wide-ranging list of cargoes, including a number of receptors and extracellular proteins, ligands and nutrients from the extracellular matrix. Disruption of the processes of caveolae-mediated endocytosis mediated by signaling proteins is critical to cellular integrity. Caveolin-1 and dynamin-2 are the 2 major proteins associated with endocytotic function. Mechanistically, dynamin-2 has a co-equal role with caveolin-1 in terms of caveolae-derived endosome formation. Recent studies have revealed the pathological outcomes associated with the dysregulation of caveolin-1 and dynamin-2 expression. Increased expression levels of the gene for caveolin, Cav-1, resulting in augmented cellular metastasis and invasion, have been demonstrated in various types of cancer, and overexpression of the gene for dynamin-2, DNM2, has been associated with tumorigenesis in cervical, pancreatic and lung cancer. An increased expression of Cav-1 and DNM2 is known to be associated with the invasive behavior of cancer cells, and with cancer progression. Furthermore, it has been previously demonstrated that, in caveolar assembly and caveolae mediated endocytosis, Cav-1 interacts directly with DNM2 during the processes. Altered expression of the 2 genes is critical for the normal function of the cell. The expression patterns of Cav-1 and DNM2 have been previously examined in bladder cancer cell lines, and were each demonstrated to be overexpressed. In the present study, the expression levels of these 2 genes in bladder cancer samples were quantified. The gene expression levels of Cav-1 and DNM2 were identified to be increased 8.88- and 8.62-fold, respectively, in tumors compared with the normal controls. Furthermore, high-grade tumors exhibited significantly increased expression levels of Cav-1 and DNM2 (both P<0.0001) compared with the low-grade tumors. In addition, compared with normal control samples, the expression of the 2 genes in tumor samples was observed to be highly significant (P<0.0001), with a marked positive correlation identified for the tumors (Pearson's correlation coefficient, r=0.80 for the tumor samples vs. r=0.32 in the normal control samples). Taken together, the results of the present study demonstrated that the overexpression of Cav-1 and DNM2 genes, and a determination of their correlation coefficients, may be a potential risk factor for bladder cancer, in addition to other clinical factors.
Collapse
Affiliation(s)
- Sadaf Azad Raja
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | | | - Aamira Tariq
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | - Nazia Bibi
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | - Kalsoom Sughra
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| | - Arzu Yousuf
- Department of Urology and Kidney Transplant, Shifa International Hospital, Islamabad 44790, Pakistan
| | - Athar Khawaja
- Department of Urology and Kidney Transplant, Shifa International Hospital, Islamabad 44790, Pakistan
| | - Muhammad Nawaz
- Armed Forces Institute of Urology, Rawalpindi 46000, Pakistan
| | - Arshad Mehmood
- Armed Forces Institute of Urology, Rawalpindi 46000, Pakistan
| | - Muhammad Jadoon Khan
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | - Alamdar Hussain
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| |
Collapse
|
4
|
Hamza A. One year with autopsy and case reports: an immense educational experience. AUTOPSY AND CASE REPORTS 2018; 8:e2018015. [PMID: 29780752 PMCID: PMC5953182 DOI: 10.4322/acr.2018.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 02/28/2018] [Indexed: 11/23/2022] Open
Affiliation(s)
- Ameer Hamza
- St. John Hospital and Medical Center, Department of Pathology . Detroit, MI , USA
| |
Collapse
|