1
|
Ferreira FC, Vaz Padilha MCS, Rocha TMDMS, Lima LS, Carandina A, Bellocchi C, Tobaldini E, Montano N, Soares PPDS, Rodrigues GD. Cardiovascular autonomic modulation during passive heating protocols: a systematic review. Physiol Meas 2023; 44:01TR01. [PMID: 36343372 DOI: 10.1088/1361-6579/aca0d9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022]
Abstract
Objective.To conduct a systematic review of the possible effects of passive heating protocols on cardiovascular autonomic control in healthy individuals.Approach.The studies were obtained from MEDLINE (PubMed), LILACS (BVS), EUROPE PMC (PMC), and SCOPUS databases, simultaneously. Studies were considered eligible if they employed passive heating protocols and investigated cardiovascular autonomic control by spontaneous methods, such as heart rate variability (HRV), systolic blood pressure variability (SBPV), and baroreflex sensitivity (BRS), in healthy adults. The revised Cochrane risk-of-bias tool (RoB-2) was used to assess the risk of bias in each study.Main results.Twenty-seven studies were included in the qualitative synthesis. Whole-body heating protocols caused a reduction in cardiac vagal modulation in 14 studies, and two studies reported both increased sympathetic modulation and vagal withdrawal. Contrariwise, local-heating protocols and sauna bathing seem to increase cardiac vagal modulation. A reduction of BRS was reported in most of the studies that used whole-body heating protocols. However, heating effects on BRS remain controversial due to methodological differences among baroreflex analysis and heating protocols.Significance.Whole-body heat stress may increase sympathetic and reduce vagal modulation to the heart in healthy adults. On the other hand, local-heating therapy and sauna bathing seem to increase cardiac vagal modulation, opposing sympathetic modulation. Nonetheless, further studies should investigate acute and chronic effects of thermal therapy on cardiovascular autonomic control.
Collapse
Affiliation(s)
- Felipe Castro Ferreira
- Laboratory of Experimental and Applied Exercise Physiology, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil
| | | | - Teresa Mell da Mota Silva Rocha
- Laboratory of Experimental and Applied Exercise Physiology, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil
| | - Ligia Soares Lima
- Laboratory of Experimental and Applied Exercise Physiology, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil
| | - Angelica Carandina
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Bellocchi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Eleonora Tobaldini
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nicola Montano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Pedro Paulo da Silva Soares
- Laboratory of Experimental and Applied Exercise Physiology, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil
| | - Gabriel Dias Rodrigues
- Laboratory of Experimental and Applied Exercise Physiology, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Proteomics Reveals Long-Term Alterations in Signaling and Metabolic Pathways Following Both Myocardial Infarction and Chemically Induced Denervation. Neurochem Res 2022; 47:2416-2430. [PMID: 35716295 DOI: 10.1007/s11064-022-03636-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 10/18/2022]
Abstract
Myocardial infraction (MI) is the principal risk factor for the onset of heart failure (HF). Investigations regarding the physiopathology of MI progression to HF have revealed the concerted engagement of other tissues, such as the autonomic nervous system and the medulla oblongata (MO), giving rise to systemic effects, important in the regulation of heart function. Cardiac sympathetic afferent denervation following application of resiniferatoxin (RTX) attenuates cardiac remodelling and restores cardiac function following MI. While the physiological responses are well documented in numerous species, the underlying molecular responses during the initiation and progression from MI to HF remains unclear. We obtained multi-tissue time course proteomics with a murine model of HF induced by MI in conjunction with RTX application. We isolated tissue sections from the left ventricle (LV), MO, cervical spinal cord and cervical vagal nerves at four time points over a 12-week study. Bioinformatic analyses consistently revealed a high statistical enrichment for metabolic pathways in all tissues and treatments, implicating a central role of mitochondria in the tissue-cellular response to both MI and RTX. In fact, the additional functional pathways found to be enriched in these tissues, involving the cytoskeleton, vesicles and signal transduction, could be downstream of responses initiated by mitochondria due to changes in neuronal pulse frequency after a shock such as MI or the modification of such frequency communication from the heart to the brain after RTX application. Development of future experiments, based on our proteomic results, should enable the dissection of more precise mechanisms whereby metabolic changes in neuronal and cardiac tissues can effectively ameliorate the negative physiological effects of MI via RTX application.
Collapse
|
3
|
Cui X, Sun G, Cao H, Liu Q, Liu K, Wang S, Zhu B, Gao X. Referred Somatic Hyperalgesia Mediates Cardiac Regulation by the Activation of Sympathetic Nerves in a Rat Model of Myocardial Ischemia. Neurosci Bull 2022; 38:386-402. [PMID: 35471719 PMCID: PMC9068860 DOI: 10.1007/s12264-022-00841-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/13/2021] [Indexed: 01/09/2023] Open
Abstract
Myocardial ischemia (MI) causes somatic referred pain and sympathetic hyperactivity, and the role of sensory inputs from referred areas in cardiac function and sympathetic hyperactivity remain unclear. Here, in a rat model, we showed that MI not only led to referred mechanical hypersensitivity on the forelimbs and upper back, but also elicited sympathetic sprouting in the skin of the referred area and C8-T6 dorsal root ganglia, and increased cardiac sympathetic tone, indicating sympathetic-sensory coupling. Moreover, intensifying referred hyperalgesic inputs with noxious mechanical, thermal, and electro-stimulation (ES) of the forearm augmented sympathetic hyperactivity and regulated cardiac function, whereas deafferentation of the left brachial plexus diminished sympathoexcitation. Intradermal injection of the α2 adrenoceptor (α2AR) antagonist yohimbine and agonist dexmedetomidine in the forearm attenuated the cardiac adjustment by ES. Overall, these findings suggest that sensory inputs from the referred pain area contribute to cardiac functional adjustment via peripheral α2AR-mediated sympathetic-sensory coupling.
Collapse
Affiliation(s)
- Xiang Cui
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Guang Sun
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China.,Research Center of Traditional Chinese Medicine, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Honglei Cao
- Department of Cardiology, Jining No. 1 People's Hospital, Jining, 272100, Shandong, China
| | - Qun Liu
- Department of Needling Manipulation, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Kun Liu
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shuya Wang
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bing Zhu
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xinyan Gao
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
4
|
Paulino ET, Rodrigues AKBF, Machado MLDP, de Oliveira KRV, Bernardino AC, Quintans-Júnior LJ, Oliveira AP, Ribeiro ÊAN. Alpha-terpineol prevents myocardial damage against isoproterenol-MI induced in Wistar-Kyoto rats: New possible to promote cardiovascular integrity. Life Sci 2021; 290:120087. [PMID: 34740575 DOI: 10.1016/j.lfs.2021.120087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 10/19/2022]
Abstract
Alpha-terpineol (TPN) is one of the major components of the resin obtained from Protium heptaphyllum. This plant has been utilized as medicine by Brazilian indigenous tribes to treat cardiovascular diseases. Scientific reports have shown that the TPN possesses vasorelaxant and antihypertensive effects. This study was conducted to assess the cardioprotective action of TPN against isoproterenol (ISO)-induced cardiotoxicity. Wistar rats were randomly divided into six groups. Rats were orally administered with TPN (25, 50, and 75 mg/kg, respectively) for 15 days, and ISO was administered (85 mg/kg, subcutaneously) on the 14th and 15th days. At the end of the experiment, the hemodynamic, baroreflex test, ECG, biochemical, histological, and morphometric changes were monitored from control and experimental groups, i.e., on the 15th day. ISO-induced myocardial infarcted rats showed an increase in mortality rates, cardiac marker enzymes, tachycardia, hypertrophy, myocardium necrosis, edema, hemorrhagic areas, infiltration of inflammatory cells like lymphocytes, and increased myocardial infarct size. However, pretreatment with TPN significantly inhibited these effects of ISO. The histopathological findings obtained for the myocardium further confirmed the biochemical results. Thus, the present study provides evidence for the efficacy of TPN against ISO-induced myocardial infarction in rats.
Collapse
Affiliation(s)
- Emanuel Tenório Paulino
- Cardiovascular Pharmacology Laboratory, Pharmaceutical Institute Sciences, Federal University of Alagoas, Brazil.
| | | | - Maria Luiza Dal Pont Machado
- Cardiovascular Pharmacology Laboratory, Pharmaceutical Institute Sciences, Federal University of Alagoas, Brazil
| | | | - Alessando César Bernardino
- Cardiovascular Pharmacology Laboratory, Pharmaceutical Institute Sciences, Federal University of Alagoas, Brazil
| | | | - Aldeídia Pereira Oliveira
- Medicinal Plants Research Center, Institute of Biology and Health Science, Federal University of Piauí, Brazil
| | | |
Collapse
|
5
|
Myocardial remote ischemic preconditioning: from cell biology to clinical application. Mol Cell Biochem 2021; 476:3857-3867. [PMID: 34125317 DOI: 10.1007/s11010-021-04192-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/26/2021] [Indexed: 12/25/2022]
Abstract
Remote ischemic preconditioning (rIPC) is a cardioprotective phenomenon where brief periods of ischemia followed by reperfusion of one organ/tissue can confer subsequent protection against ischemia/reperfusion injury in other organs, such as the heart. It involves activation of humoral, neural or systemic communication pathways inducing different intracellular signals in the heart. The main purpose of this review is to summarize the possible mechanisms involved in the rIPC cardioprotection, and to describe recent clinical trials to establish the efficacy of these strategies in cardioprotection from lethal ischemia/reperfusion injury. In this sense, certain factors weaken the subcellular mechanisms of rIPC in patients, such as age, comorbidities, medication, and anesthetic protocol, which could explain the heterogeneity of results in some clinical trials. For these reasons, further studies, carefully designed, are necessary to develop a clearer understanding of the pathways and mechanism of early and late rIPC. An understanding of the pathways is important for translation to patients.
Collapse
|
6
|
Lu SF, Wang JM, Yuan J, Yang WX, Chen LY, Zhang T, Jing XY, Zhuang Y, Zhang CS, Fu SP, Yu ML. Electroacupuncture improves cardiac function and reduces infarct size by modulating cardiac autonomic remodeling in a mouse model of myocardial ischemia. Acupunct Med 2021; 39:681-690. [PMID: 34056953 DOI: 10.1177/09645284211009536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Sympathetic and parasympathetic nerve remodeling play an important role in cardiac function after myocardial ischemia (MI) injury. Increasing evidence indicates that electroacupuncture (EA) can regulate cardiac function by modulating the autonomic nervous system (ANS), but little is known about its effectiveness on neural remodeling post-MI. OBJECTIVES To investigate the role of EA in ANS remodeling post-MI. METHODS Adult male C57/BL6 mice were equally divided into the Control (Ctrl), MI and EA groups after generating the MI model by ligating the left anterior descending (LAD) coronary artery. Echocardiography and 2,3,5-triphenyltetrazolium (TTC) staining were employed to evaluate cardiac function and infarct size after EA treatment for five consecutive days. Serum norepinephrine (NE) levels were measured by ELISA to quantify sympathetic activation. Then, ANS remodeling was detected by immunohistochemistry (IHC), RT-qPCR, and Western blotting. RESULTS Our preliminary findings showed that EA increased ejection fraction and fractional shortening and reduced infarct area after MI injury. Serum NE levels in the EA group were significantly decreased compared with those in the MI group. IHC staining results demonstrated that the density of growth associated protein (GAP)43 and tyrosine hydroxylase (TH) positive nerve fibers in the EA group were decreased with increased choline acetyltransferase (CHAT) and vesicular acetylcholine transporter (VACHT). Meanwhile, the results verified that mRNA and protein expression of GAP43 and TH were significantly inhibited by EA treatment in the MI mice, accompanied by elevated CHAT and VACHT. CONCLUSIONS EA treatment could improve cardiac function and reduce infarct size by modulating sympathetic and parasympathetic nerve remodeling post-MI, thus helping the cardiac ANS reach a new balance to try to protect the heart from further possible injury.
Collapse
Affiliation(s)
- Sheng-Feng Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun-Meng Wang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Yuan
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wen-Xiu Yang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li-Yao Chen
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tao Zhang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin-Yue Jing
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Zhuang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cheng-Shun Zhang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shu-Ping Fu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mei-Ling Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
7
|
Hausenloy DJ, Bøtker HE, Ferdinandy P, Heusch G, Ng GA, Redington A, Garcia-Dorado D. Cardiac innervation in acute myocardial ischaemia/reperfusion injury and cardioprotection. Cardiovasc Res 2020; 115:1167-1177. [PMID: 30796814 DOI: 10.1093/cvr/cvz053] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/21/2018] [Accepted: 02/21/2019] [Indexed: 12/13/2022] Open
Abstract
Acute myocardial infarction (AMI) and the heart failure (HF) that often complicates this condition, are among the leading causes of death and disability worldwide. To reduce myocardial infarct (MI) size and prevent heart failure, novel therapies are required to protect the heart against the detrimental effects of acute ischaemia/reperfusion injury (IRI). In this regard, targeting cardiac innervation may provide a novel therapeutic strategy for cardioprotection. A number of cardiac neural pathways mediate the beneficial effects of cardioprotective strategies such as ischaemic preconditioning and remote ischaemic conditioning, and nerve stimulation may therefore provide a novel therapeutic strategy for cardioprotection. In this article, we provide an overview of cardiac innervation and its impact on acute myocardial IRI, the role of extrinsic and intrinsic cardiac neural pathways in cardioprotection, and highlight peripheral and central nerve stimulation as a cardioprotective strategy with therapeutic potential for reducing MI size and preventing HF following AMI. This article is part of a Cardiovascular Research Spotlight Issue entitled 'Cardioprotection Beyond the Cardiomyocyte', and emerged as part of the discussions of the European Union (EU)-CARDIOPROTECTION Cooperation in Science and Technology (COST) Action, CA16225.
Collapse
Affiliation(s)
- Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore.,National Heart Research Institute Singapore, National Heart Centre, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore.,The Hatter Cardiovascular Institute, University College London, London, UK.,The National Institute of Health Research University College London Hospitals Biomedical Research Centre, Research & Development, London, UK.,Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Nuevo Leon, Mexico
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - G André Ng
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, UK
| | - Andrew Redington
- Cincinnati Children's Hospital Medical Center, Heart Institute, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David Garcia-Dorado
- Department of Cardiology, Vascular Biology and Metabolism Area, Vall d'Hebron University Hospital and Research Institute (VHIR), Universitat Autónoma de Barcelona, Spain.,Instituto CIBER de Enfermedades Cardiovasculares (CIBERCV): Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW This review summarizes the current knowledge on the relationship of physical activity, exercise, and cardiorespiratory fitness (CRF) with cardiovascular autonomic neuropathy (CAN) based on epidemiological, clinical, and interventional studies. RECENT FINDINGS The prevalence of CAN increases with age and duration of diabetes. Further risk factors for CAN comprise poor glycemic control, dyslipidemia, abdominal obesity, hypertension, and the presence of diabetic complications. CAN has been also linked to reduced CRF. We recently showed that CRF parameters (e.g., maximal oxidative capacity or oxidative capacity at the anaerobic threshold) are associated with cardiac autonomic function in patients recently diagnosed with type 1 or type 2 diabetes. Exercise interventions have shown that physical activity can increase cardiovagal activity and reduce sympathetic overactivity. In particular, long-term and regularly, but also supervised, performed endurance and high-intense and high-volume exercise improves cardiac autonomic function in patients with type 2 diabetes. By contrast, the evidence in those with type 1 diabetes and also in individuals with prediabetes or metabolic syndrome is weaker. Overall, the studies reviewed herein addressing the question whether favorably modulating the autonomic nervous system may improve CRF during exercise programs support the therapeutic concept to promote physical activity and to achieve physical fitness. However, high-quality exercise interventions, especially in type 1 diabetes and metabolic syndrome including prediabetes, are further required to better understand the relationship between physical activity, fitness, and cardiac autonomic function.
Collapse
Affiliation(s)
- Martin Röhling
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany
- Department of Sports Medicine, University of Wuppertal, Wuppertal, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany.
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|