1
|
Tian R, Zhu H, Lu Y, Shi X, Tu P, Li H, Huang H, Chen D. Therapeutic Potential of 2-Methylquinazolin-4(3H)-one as an Antiviral Agent against Influenza A Virus-Induced Acute Lung Injury in Mice. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227857. [PMID: 36431955 PMCID: PMC9697438 DOI: 10.3390/molecules27227857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/25/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Qingdai-Mabo (QM), a traditional Chinese herbal formula composed of medicinal herb and fungus, has been used for treatment of cough and viral pneumonia. However, the underlying mechanism and bioactive components against anti-influenza A virus remain unclear. In the present study, ethyl acetate (EA) extract of QM decoctions was tested for its biological activity against acute lung injury (ALI) and its main components were identified using UPLC-MS/MS. In total, 18 bioactive components were identified, including 2-Methylquinaozlin-4(3H)-one (C1), which showed significant antiviral activity in vitro with an IC50 of 23.8 μg/mL. Furthermore, we validated the efficacy of C1 in ameliorating ALI lesions and inflammation in influenza A virus-infected mice. The results showed that C1 significantly reduced the lung index, downregulated neuraminidase (NA) and nucleoprotein (NP), and decreased the expression of pro-inflammatory molecules IFN-α, TNF-α, MCP-1, IL-6, and IL-8; however, they enhanced levels of IL-10 and IFN-γ in lung homogenate from mice infected by influenza A virus. In addition, C1 inhibited the recruitment of macrophages. These in vitro and in vivo studies suggested that the significant anti-influenza A virus activity contributed to its curative effect on lesions and inflammation of viral pneumonia in mice. Given its potential antiviral activity against influenza A virus, C1 is determined to be a main active component in the EA extract of QM. Taken together, the antiviral activity of C1 suggests its potential as an effective treatment against viral pneumonia via the inhibition of virus replication, but the mechanism C1 on antiviral research needs to be explored further.
Collapse
Affiliation(s)
- Rong Tian
- Department of Natural Medicine, School of Pharmacy, Fudan University, No. 3728, Jin Ke Road, Shanghai 201203, China
| | - Haiyan Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, No. 3728, Jin Ke Road, Shanghai 201203, China
- Correspondence: (H.Z.); (D.C.)
| | - Yan Lu
- Department of Natural Medicine, School of Pharmacy, Fudan University, No. 3728, Jin Ke Road, Shanghai 201203, China
| | - Xunlong Shi
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, No. 3728, Jin Ke Road, Shanghai 201203, China
| | - Peng Tu
- Department of Natural Medicine, School of Pharmacy, Fudan University, No. 3728, Jin Ke Road, Shanghai 201203, China
| | - Hong Li
- Department of Pharmacy, Fudan University, No. 3728, Jin Ke Road, Shanghai 201203, China
| | - Hai Huang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, No. 3728, Jin Ke Road, Shanghai 201203, China
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, No. 3728, Jin Ke Road, Shanghai 201203, China
- Correspondence: (H.Z.); (D.C.)
| |
Collapse
|
2
|
Zeng X, Zhang X, Wei D. Toonaciliatin K attenuates the lung injury induced by lung infection of H1N1 influenza virus by regulating the NF-κB/MyD88/TLR-7 pathway in mice. Arch Med Sci 2020; 16:1387-1393. [PMID: 33224338 PMCID: PMC7667422 DOI: 10.5114/aoms.2019.86220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 05/03/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION H1N1 infection has a high mortality rate due to lung injury and respiratory distress. The present study determines the protective effect of toonaciliatin K against the lung injury induced by the lung infection of H1N1 influenza mice and also postulates the molecular mechanism. MATERIAL AND METHODS Infection was induced by exposing the anesthetized mice to H1N1 virus (10 LD50 in a volume of 30 ml) intranasally at day zero and mice were treated with toonaciliatin K 16.5 and 33 mg/kg intragastrically for 2 weeks. The effect of toonaciliatin K was assessed by estimating survival rate and lung edema by the lung index. Histopathological changes were determined by H + E staining and western blot and an RT-PCR study was also performed on the lung tissue homogenate. RESULTS Data of the study suggest that toonaciliatin K treatment enhances the survival rate and reduces the lung index compared to infected mice. There was a decrease in the level of chemokines and cytokines in the lung tissue of the toonaciliatin K treated group compared to infected mice. Moreover, expression of TLR-7, NF-κB p65 and MyD88 protein was found to be reduced in the lung tissue of the toonaciliatin K treated group compared to infected mice. CONCLUSIONS Data of the study suggested that toonaciliatin K protects against lung injury in lung H1N1 lung infection by regulating the TLR-7/Myd88/NF-κB p65 pathway.
Collapse
Affiliation(s)
- Xiankun Zeng
- Department of Laboratory, Tongliao City Hospital, Tongliao, Inner Mongolia Autonomous Region, China
| | - Xiaofan Zhang
- Department of Laboratory, Tongliao City Hospital, Tongliao, Inner Mongolia Autonomous Region, China
| | - Dongsheng Wei
- Department of Laboratory, Tongliao City Hospital, Tongliao, Inner Mongolia Autonomous Region, China
| |
Collapse
|
3
|
Arriaga-Pizano L, Ferat-Osorio E, Rodríguez-Abrego G, Mancilla-Herrera I, Domínguez-Cerezo E, Valero-Pacheco N, Pérez-Toledo M, Lozano-Patiño F, Laredo-Sánchez F, Malagón-Rangel J, Nellen-Hummel H, González-Bonilla C, Arteaga-Troncoso G, Cérbulo-Vázquez A, Pastelin-Palacios R, Klenerman P, Isibasi A, López-Macías C. Differential Immune Profiles in Two Pandemic Influenza A(H1N1)pdm09 Virus Waves at Pandemic Epicenter. Arch Med Res 2015; 46:651-8. [PMID: 26696552 PMCID: PMC4914610 DOI: 10.1016/j.arcmed.2015.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 12/01/2015] [Indexed: 11/26/2022]
Abstract
Background and Aims Severe influenza A(H1N1)pdm2009 virus infection cases are characterized by sustained immune activation during influenza pandemics. Seasonal flu data suggest that immune mediators could be modified by wave-related changes. Our aim was to determine the behavior of soluble and cell-related mediators in two waves at the epicenter of the 2009 influenza pandemic. Methods Leukocyte surface activation markers were studied in serum from peripheral blood samples, collected from the 1st (April–May, 2009) and 2nd (October 2009–February 2010) pandemic waves. Patients with confirmed influenza A(H1N1)pdm2009 virus infection (H1N1), influenza-like illness (ILI) or healthy donors (H) were analyzed. Results Serum IL-6, IL-4 and IL-10 levels were elevated in H1N1 patients from the 2nd pandemic wave. Additionally, the frequency of helper and cytotoxic T cells was reduced during the 1st wave, whereas CD69 expression in helper T cells was increased in the 2nd wave for both H1N1 and ILI patients. In contrast, CD62L expression in granulocytes from the ILI group was increased in both waves but in monocytes only in the 2nd wave. Triggering Receptor Expressed on Myeloid cells (TREM)-1 expression was elevated only in H1N1 patients at the 1st wave. Conclusions Our results show that during the 2009 influenza pandemic a T cell activation phenotype is observed in a wave-dependent fashion, with an expanded activation in the 2nd wave, compared to the 1st wave. Conversely, granulocyte and monocyte activation is infection-dependent. This evidence collected at the pandemic epicenter in 2009 could help us understand the differences in the underlying cellular mechanisms that drive the wave-related immune profile behaviors that occur against influenza viruses during pandemics.
Collapse
Affiliation(s)
- Lourdes Arriaga-Pizano
- Medical Research Unit in Immunochemistry, Specialties Hospital, National Medical Center Siglo XXI, IMSS, Mexico City, Mexico
| | - Eduardo Ferat-Osorio
- Medical Research Unit in Immunochemistry, Specialties Hospital, National Medical Center Siglo XXI, IMSS, Mexico City, Mexico; Gastrointestinal Surgery Service, Specialties Hospital, National Medical Center Siglo XXI, IMSS, Mexico City, Mexico
| | | | - Ismael Mancilla-Herrera
- Infectology and Immunology department, National Institute of Perinatology, SSA, Mexico City, Mexico
| | - Esteban Domínguez-Cerezo
- Medical Research Unit in Immunochemistry, Specialties Hospital, National Medical Center Siglo XXI, IMSS, Mexico City, Mexico; Graduate Program on Immunology, ENCB-IPN, Mexico City, Mexico
| | - Nuriban Valero-Pacheco
- Medical Research Unit in Immunochemistry, Specialties Hospital, National Medical Center Siglo XXI, IMSS, Mexico City, Mexico; Graduate Program on Immunology, ENCB-IPN, Mexico City, Mexico
| | - Marisol Pérez-Toledo
- Medical Research Unit in Immunochemistry, Specialties Hospital, National Medical Center Siglo XXI, IMSS, Mexico City, Mexico; Graduate Program on Immunology, ENCB-IPN, Mexico City, Mexico
| | - Fernando Lozano-Patiño
- Internal Medicine Service, Specialties Hospital of the National Medical Center Siglo XXI, IMSS, Mexico City, Mexico
| | - Fernando Laredo-Sánchez
- Internal Medicine Service, Specialties Hospital of the National Medical Center Siglo XXI, IMSS, Mexico City, Mexico
| | - José Malagón-Rangel
- Internal Medicine Service, Specialties Hospital of the National Medical Center Siglo XXI, IMSS, Mexico City, Mexico
| | - Haiko Nellen-Hummel
- Internal Medicine Service, Specialties Hospital of the National Medical Center Siglo XXI, IMSS, Mexico City, Mexico
| | - César González-Bonilla
- Unit for Epidemiological Surveillance, National Medical Center La Raza, IMSS, Mexico City, Mexico
| | | | | | | | - Paul Klenerman
- Oxford Biomedical Research Centre and Oxford Martin School, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Armando Isibasi
- Medical Research Unit in Immunochemistry, Specialties Hospital, National Medical Center Siglo XXI, IMSS, Mexico City, Mexico
| | - Constantino López-Macías
- Medical Research Unit in Immunochemistry, Specialties Hospital, National Medical Center Siglo XXI, IMSS, Mexico City, Mexico; Visiting Professor of Immunology, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Protective efficacy of orally administered, heat-killed Lactobacillus pentosus b240 against influenza A virus. Sci Rep 2013; 3:1563. [PMID: 23535544 PMCID: PMC3610098 DOI: 10.1038/srep01563] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 03/04/2013] [Indexed: 12/30/2022] Open
Abstract
Influenza A(H1N1)pdm virus caused the first human pandemic of the 21st century. Although various probiotic Lactobacillus species have been shown to have anti-microbial effects against pneumonia-inducing pathogens, the prophylactic efficacy and mechanisms behind their protection remain largely unknown. Here, we evaluated the prophylactic efficacy of heat-killed Lactobacillus pentosus b240 against lethal influenza A(H1N1)pdm virus infection in a mouse model. To further define the protective responses induced by b240, we performed virologic, histopathologic, and transcriptomic analyses on the mouse lungs. Although we did not observe an appreciable effect of b240 on virus growth, cytokine production, or histopathology, gene expressional analysis revealed that oral administration of b240 differentially regulates antiviral gene expression in mouse lungs. Our results unveil the possible mechanisms behind the protection mediated by b240 against influenza virus infection and provide new insights into probiotic therapy.
Collapse
|
5
|
Hendrickson CM, Matthay MA. Viral pathogens and acute lung injury: investigations inspired by the SARS epidemic and the 2009 H1N1 influenza pandemic. Semin Respir Crit Care Med 2013; 34:475-86. [PMID: 23934716 PMCID: PMC4045622 DOI: 10.1055/s-0033-1351122] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Acute viral pneumonia is an important cause of acute lung injury (ALI), although not enough is known about the exact incidence of viral infection in ALI. Polymerase chain reaction-based assays, direct fluorescent antigen (DFA) assays, and viral cultures can detect viruses in samples from the human respiratory tract, but the presence of the virus does not prove it to be a pathogen, nor does it give information regarding the interaction of viruses with the host immune response and bacterial flora of the respiratory tract. The severe acute respiratory syndrome (SARS) epidemic and the 2009 H1N1 influenza pandemic provided a better understanding of how viral pathogens mediate lung injury. Although the viruses initially infect the respiratory epithelium, the relative role of epithelial damage and endothelial dysfunction has not been well defined. The inflammatory host immune response to H1N1 infection is a major contributor to lung injury. The SARS coronavirus causes lung injury and inflammation in part through actions on the nonclassical renin angiotensin pathway. The lessons learned from the pandemic outbreaks of SARS coronavirus and H1N1 capture key principles of virally mediated ALI. There are pathogen-specific pathways underlying virally mediated ALI that converge onto a common end pathway resulting in diffuse alveolar damage. In terms of therapy, lung protective ventilation is the cornerstone of supportive care. There is little evidence that corticosteroids are beneficial, and they might be harmful. Future therapeutic strategies may be targeted to specific pathogens, the pathogenetic pathways in the host immune response, or enhancing repair and regeneration of tissue damage.
Collapse
Affiliation(s)
- Carolyn M Hendrickson
- Division of Pulmonary and Critical Care Medicine, Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California-San Francisco, CA 94143, USA
| | | |
Collapse
|