1
|
Song X, Li X, Wang Y, Wu YJ. Involvement of gut microbiota in chlorpyrifos-induced subchronic toxicity in mice. Arch Toxicol 2025; 99:1237-1252. [PMID: 39714733 DOI: 10.1007/s00204-024-03934-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024]
Abstract
Chlorpyrifos (CPF) is one of the most widely used organophosphorus pesticides all over the world. Unfortunately, long-term exposure to CPF may cause considerable toxicity to organisms. Some evidence suggests that the intestinal microbial community may be involved in regulating the toxicity of CPF. In this study, we explored if the intestinal microbial community is involved in regulating the toxicity of CPF. Adult mice were continuously exposed to CPF (4 mg/kg body weight /day) for 10 weeks with or without a 2-week pretreatment of antibiotics to change the ecological structure of intestinal microorganisms in advance. Pathological changes in the liver and kidneys were examined and the biochemical parameters in serum for liver and kidney functions were detected, and changes in the intestinal microbial community of the mice were measured. The results showed that subchronic exposure to low-dose CPF caused an ecological imbalance in the intestinal flora and caused pathological damage to the liver and kidneys. Serum biochemical indicators for liver function such as alanine aminotransferase and total bile acids contents and renal biochemical indicators such as urea nitrogen and creatinine were disrupted. Changes in intestinal microbial community structure by using antibiotics in advance can effectively alleviate the pathological and functional damage to the liver and kidneys caused by CPF exposure. Further analysis showed that intestinal microorganisms such as Saccharibacteria (TM7), Odoribacter, Enterococcus and AF12 genera may be involved in managing the toxicity of CPF. Together, our results indicated that long-term low-dose CPF exposure could induce hepatotoxicity and nephrotoxicity, and liver and kidney damage may be mitigated by altering the ecology of intestinal microorganisms.
Collapse
Affiliation(s)
- Xiaohua Song
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Road, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyi Li
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Road, Beijing, 100101, China
- College of Life Sciences, Inner Mongolia Agricultural University, Saihan District, Hohhot, 010018, China
| | - Yuzhen Wang
- College of Life Sciences, Inner Mongolia Agricultural University, Saihan District, Hohhot, 010018, China.
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Road, Beijing, 100101, China.
| |
Collapse
|
2
|
Sakinah EN, Wisudanti DD, Abrori C, Supangat S, Ramadhani LR, Putri IS, Pamungkas GC, Arrobani MH, Rahmadina R, Dirgantara PW. The effect of chlorpyrifos oral exposure on the histomorphometric and kidney function in Wistar rat. Indian J Pharmacol 2024; 56:186-190. [PMID: 39078182 PMCID: PMC11286096 DOI: 10.4103/ijp.ijp_820_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/14/2024] [Accepted: 06/03/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Chlorpyrifos belongs to a broad-spectrum organophosphate insecticide that has high toxicity, is metabolized in the liver by the oxidation reaction, and can inhibit acetylcholinesterase activity. Acetylcholinesterase inhibition generates the reactive oxygen species and induces oxidative stress, which ultimately results in cellular damage like in the kidney. Examining blood urea nitrogen (BUN) levels, creatinine, and kidney histopathology is an appropriate indicator to assess the toxicity of chlorpyrifos to the degree of damage to cells and kidney tissue. MATERIALS AND METHODS This research used to determine the effect of duration of exposure to chlorpyrifos and dose-response relationships is important for early detection of the effects of chlorpyrifos toxicity on health. The research study was a true experimental (completely randomized design) consisting of 30 subjects divided into 5 groups. Controlled Group (K1) given 1 mg/kg BW Tween 20 and NaCl 0, 9% until the 56th day. The chlorpyrifos exposed group (P1, P2, P3, and P4) was given chlorpyrifos 5 mg/kg BW for 7, 14, 28, and 56 days. After the treatment, BUN and creatinine levels were measured, and microscopic changes in the kidney were analyzed. The results of BUN, creatinine, and kidney histopathologic were analyzed using the analysis of variance statistical test. RESULTS The data result showed that compared to the control group, there were significant increases of BUN and creatinine (P = 0.013 and P = 0.003). Histopathological examinations of kidney glomerulus diameter were also smaller compared to the control group (P = 0.00). All the data measurement indicates significant differences compared to the control group. CONCLUSIONS We concluded that sub-chronic oral exposure to chlorpyrifos at low doses can damage the kidneys and cause kidney failure.
Collapse
Affiliation(s)
- Elly Nurus Sakinah
- Department of Pharmacology, Faculty of Medicine, Universitas Jember, East Java, Indonesia
| | - Desie Dwi Wisudanti
- Department of Pharmacology, Faculty of Medicine, Universitas Jember, East Java, Indonesia
| | - Cholis Abrori
- Department of Pharmacology, Faculty of Medicine, Universitas Jember, East Java, Indonesia
| | - Supangat Supangat
- Department of Pharmacology, Faculty of Medicine, Universitas Jember, East Java, Indonesia
| | - Laily Rahmah Ramadhani
- Department of Pharmacology, Faculty of Medicine, Universitas Jember, East Java, Indonesia
| | - Indis Suyanto Putri
- Department of Pharmacology, Faculty of Medicine, Universitas Jember, East Java, Indonesia
| | - Galang Cahyo Pamungkas
- Department of Pharmacology, Faculty of Medicine, Universitas Jember, East Java, Indonesia
| | | | - Risa Rahmadina
- Department of Pharmacology, Faculty of Medicine, Universitas Jember, East Java, Indonesia
| | | |
Collapse
|
3
|
Binmahfouz LS, Hassanein EH, Bagher AM, Hareeri RH, Alamri ZZ, Algandaby MM, Abdel-Daim MM, Abdel-Naim AB. Berberine alleviates chlorpyrifos-induced nephrotoxicity in rats via modulation of Nrf2/HO-1 axis. Heliyon 2024; 10:e25233. [PMID: 38327393 PMCID: PMC10847644 DOI: 10.1016/j.heliyon.2024.e25233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
Chlorpyrifos (CPS), an organophosphorus insecticide, is widely used for agricultural and non-agricultural purposes with hazardous health effects. Berberine (BBR) is a traditional Chinese medicine and a phytochemical with anti-inflammatory and anti-oxidative properties. The present study evaluated the effects of BBR against kidney damage induced by CPS and the underlying mechanisms. An initial study indicated that BBR 50 mg/kg was optimal under our experimental conditions. Then, 24 rats (6/group) were randomized into: control, BBR (50 mg/kg/day), CPS (10 mg/kg/day), and CPS + BBR. BBR was administration 1 h prior to CPS. Each treatment was delivered daily for a period of 28 consecutive days using a gastric gavage tube. Compared to CPS-alone treated rats, BBR effectively improved renal function by preventing the rise in serum urea, creatinine, and uric levels. The reno-protective effects of BBR were confirmed through a histological examination of kidney tissues. BBR restored oxidant-antioxidant balance in renal tissues mediated by Keap1/Nrf2/HO-1 axis modulation. In addition, BBR decreased nitric oxide (NO) and myeloperoxidase (MPO) activity. This was paralleled with the potent down-regulation of NF-κB. Furthermore, BBR exhibited anti-apoptotic activities supported by the upregulation of Bcl-2 and down-regulation of Bax and caspase-3 expression. In conclusion, our data suggest that BBR attenuates CPS-induced nephrotoxicity in rats by restoring oxidant-antioxidant balance and inhibiting inflammatory response and apoptosis in renal tissue. This is mediated, at least partly, by modulation of the Nrf2/HO-1 axis.
Collapse
Affiliation(s)
- Lenah S. Binmahfouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Emad H.M. Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Amina M. Bagher
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Rawan H. Hareeri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Zaenah Z. Alamri
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mardi M. Algandaby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Medicinal Plants Research Group, Deanship of Scientific Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Ashraf B. Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Medicinal Plants Research Group, Deanship of Scientific Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
4
|
Al-Asmari KM, Altayb HN, Al-Attar AM, Qahl SH, Al-Thobaiti SA, Abu Zeid IM. Arabica coffee and olive oils mitigate malathion-induced nephrotoxicity in rat: In silico, immunohistochemical and biochemical evaluation. Saudi J Biol Sci 2022; 29:103307. [PMID: 35602869 PMCID: PMC9120970 DOI: 10.1016/j.sjbs.2022.103307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/21/2022] [Accepted: 05/06/2022] [Indexed: 11/24/2022] Open
|