Response of antimicrobial peptides from porcine neutrophils to pentoxifylline and antigens from Gram negative and Gram positive bacteria.
Res Vet Sci 2016;
104:160-5. [PMID:
26850555 DOI:
10.1016/j.rvsc.2015.12.019]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/16/2015] [Accepted: 12/22/2015] [Indexed: 11/20/2022]
Abstract
Neutrophils, the main component of the defense against invading organisms have also been implicated in tissue damage in numerous inflammatory conditions. Neutrophil products can degrade the extracellular matrix and when excessively released are thought to cause some disorders. As it is known, pentoxifylline (PTX) can suppress a range of neutrophil responses. Cathelicidins are components of the early host defenses against infection, however, in most cases cleavage with elastase is necessary to obtain active forms. Thus, the aim of our study was to assess the usage of PTX as a factor which could inhibit some neutrophil functions, and to assess if PTX can lead to the impairment of the release from these cells active cathelicidins. For these purposes we determined neutrophil activity as well as expression of cathelicidins from porcine neutrophils in cultures under the influence of PTX. PTX exerted an inhibitory effect on elastase and MPO release from neutrophils. At lower concentrations of PTX, ALP release was inhibited both in cultures stimulated with PTX+fMLP and with PTX+LPS. Inhibition of superoxide generation was insignificant, whereas a decrease of NO production was noted. The MALDI TOF analysis revealed that in all cultures stimulated with PTX+fLMP and PTX+LPS there was no inhibition of the release of cathelicidins in comparison with cultures stimulated only with fMLP and only with LPS. Our study proved that although PTX in porcine neutrophils is able to suppress many neutrophil functions, the expression of cathelicidins is maintained.
Collapse