1
|
Anand S, Khan MA, Zubair H, Sudan SK, Vikramdeo KS, Deshmukh SK, Azim S, Srivastava SK, Singh S, Singh AP. MYB sustains hypoxic survival of pancreatic cancer cells by facilitating metabolic reprogramming. EMBO Rep 2023; 24:e55643. [PMID: 36592158 PMCID: PMC9986821 DOI: 10.15252/embr.202255643] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 01/03/2023] Open
Abstract
Extensive desmoplasia and poor vasculature renders pancreatic tumors severely hypoxic, contributing to their aggressiveness and therapy resistance. Here, we identify the HuR/MYB/HIF1α axis as a critical regulator of the metabolic plasticity and hypoxic survival of pancreatic cancer cells. HuR undergoes nuclear-to-cytoplasmic translocation under hypoxia and stabilizes MYB transcripts, while MYB transcriptionally upregulates HIF1α. Upon MYB silencing, pancreatic cancer cells fail to survive and adapt metabolically under hypoxia, despite forced overexpression of HIF1α. MYB induces the transcription of several HIF1α-regulated glycolytic genes by directly binding to their promoters, thus enhancing the recruitment of HIF1α to hypoxia-responsive elements through its interaction with p300-dependent histone acetylation. MYB-depleted pancreatic cancer cells exhibit a dramatic reduction in tumorigenic ability, glucose-uptake and metabolism in orthotopic mouse model, even after HIF1α restoration. Together, our findings reveal an essential role of MYB in metabolic reprogramming that supports pancreatic cancer cell survival under hypoxia.
Collapse
Affiliation(s)
- Shashi Anand
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Mohammad Aslam Khan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Haseeb Zubair
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Sarabjeet Kour Sudan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Kunwar Somesh Vikramdeo
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Sachin Kumar Deshmukh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Shafquat Azim
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Sanjeev Kumar Srivastava
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Seema Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Ajay Pratap Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
2
|
Wang P, Qiu YQ, Chen XT, Liang XF, Ren LH. Metabolomic insights into polyhydroxyalkanoates production by halophilic bacteria with acetic acid as carbon source. Biosci Biotechnol Biochem 2019; 83:1955-1963. [PMID: 31200628 DOI: 10.1080/09168451.2019.1630252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A metabolomics method was established to analyze changes of intracellular metabolites and study the mechanism for enhancing polyhydroxyalkanoates production by halotolerant bacteria, Bacillus cereus strain HY-3, using acetic acid as carbon source. Maximum poly(3-hydroxybutyrate) (PHB) contents for the medium with 0.5 g/L and 5.0 g/L of acetic acid were 41.0 ± 0.415% and 49.2 ± 1.21%. Principal components analysis revealed clear metabolic differences in different growth stages and different concentrations of carbon source. According to statistical analysis, 3-hydroxybutyrate (3-HB), serine, threonine, malate, and pyruvate were determined as potential biomarkers for PHB production. Moreover, metabolic pathways analysis indicated that high level of 3-HB in death phase was due to the limitation of carbon source. Metabolism of glycine, serine, and threonine was influential pathway for PHB production among amino acid metabolisms. High levels of organic acids from the TCA cycle could stimulate the carbon source flux into PHB biosynthetic pathway.
Collapse
Affiliation(s)
- Pan Wang
- School of Food and Chemical Engineering, Beijing Technology and Business University , Beijing , China
| | - Yin-Quan Qiu
- School of Food and Chemical Engineering, Beijing Technology and Business University , Beijing , China
| | - Xi-Teng Chen
- School of Food and Chemical Engineering, Beijing Technology and Business University , Beijing , China
| | - Xiao-Fei Liang
- School of Food and Chemical Engineering, Beijing Technology and Business University , Beijing , China
| | - Lian-Hai Ren
- School of Food and Chemical Engineering, Beijing Technology and Business University , Beijing , China
| |
Collapse
|
3
|
Lee HS, Shin KO, Jo SC, Lee YM, Yim YH. Optimized precursor ion selection for labile ions in a linear ion trap mass spectrometer and its impact on quantification using selected reaction monitoring. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:1234-1238. [PMID: 25476940 DOI: 10.1002/jms.3450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/19/2014] [Accepted: 07/26/2014] [Indexed: 06/04/2023]
Abstract
The fragmentation of fragile ions during the application of an isolation waveform for precursor ion selection and the resulting loss of isolated ion intensity is well-known in ion trap mass spectrometry (ITMS). To obtain adequate ion intensity in the selected reaction monitoring (SRM) of fragile precursor ions, a wider ion isolation width is required. However, the increased isolation width significantly diminishes the selectivity of the channels chosen for SRM, which is a serious problem for samples with complex matrices. The sensitive and selective quantification of many lipid molecules, including ceramides from real biological samples, using a linear ion trap mass spectrometer is also hindered by the same problem because of the ease of water loss from protonated ceramide ions. In this study, a method for the reliable quantification of ceramides using SRM with near unity precursor ion isolation has been developed for ITMS by utilizing alternative precursor ions generated by in-source dissociation. The selected precursor ions allow the isolation of ions with unit mass width and the selective analysis of ceramides using SRM with negligible loss of sensitivity. The quantification of C18:0-, C24:0- and C24:1-ceramides using the present method shows excellent linearity over the concentration ranges from 6 to 100, 25 to 1000 and 25 to 1000 nM, respectively. The limits of detection of C18:0-, C24:0- and C24:1-ceramides were 0.25, 0.25 and 5 fmol, respectively. The developed method was successfully applied to quantify ceramides in fetal bovine serum.
Collapse
Affiliation(s)
- Hyun-Seok Lee
- College of Pharmacy, Chungbuk National University, 52 Naesudong-ro, Heungdeok-gu, Cheongju, Chungbuk, 361-763, Korea; Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon, 305-340, Korea
| | | | | | | | | |
Collapse
|
4
|
Jin YX, Shi LH, Kawata Y. Metabolomics-based component profiling of Halomonas sp. KM-1 during different growth phases in poly(3-hydroxybutyrate) production. BIORESOURCE TECHNOLOGY 2013; 140:73-79. [PMID: 23672941 DOI: 10.1016/j.biortech.2013.04.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 06/02/2023]
Abstract
To investigate the relationship between the production of poly(3-hydroxybutyrate) (PHB) and metabolic changes during different growth phases, a non-sterile batch fermentation process involving an alkalophilic and halophilic bacterium, Halomonas sp. KM-1, was used. Intracellular metabolites were analyzed using gas chromatography-mass spectrometry to characterize the metabolic profile. Significant changes relating to PHB production were observed in the TCA cycle, lipid-synthesis and amino acid biosynthetic pathways were found to shift dramatically between the exponential growth and stationary phases. During the stationary phase, 17 metabolites were upregulated and a cell dry mass of 17.8 g/L that included 44.8% PHB was observed at 24h in 5% glucose-supplemented cultures, whereas 11 metabolites were upregulated and a cell dry mass of 38.4 g/L that included 73.7% PHB was observed at 36 h in 10% glucose-supplemented cultures. This study provides pattern analysis of metabolite regulation during PHB accumulation, indicating that multicomponent and phase-specific mechanisms are involved.
Collapse
Affiliation(s)
- You-Xun Jin
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | | | | |
Collapse
|