1
|
Ren S, Cho S, Lin R, Gedi V, Park S, Ahn CW, Lee DK, Lee MH, Lee S, Kim S. Nonbiodegradable Spiegelmer-Driven Colorimetric Biosensor for Bisphenol A Detection. BIOSENSORS 2022; 12:bios12100864. [PMID: 36291000 PMCID: PMC9599196 DOI: 10.3390/bios12100864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 05/30/2023]
Abstract
Spiegelmers are enantiomers of natural D-oligonucleotides that bind to targets with distinct structures such as aptamers. The high susceptibility of natural D-form aptamers to nucleases greatly hinders their application in biological environments. Here, a nonbiodegradable spiegelmer-based platform for the sensitive detection of bisphenol A (BPA) was developed. Due to the symmetric molecule of BPA, the D-form aptamer can be directly converted into mirror forms via chemical synthesis. Aptamer-target interactions that involve chemically synthesized spiegelmers were characterized by biolayer interferometry, and their stabilities were tested in various biological fluids by exposure to nucleases. We demonstrate for the first time the use of a nuclease-resistant spiegelmer in a simple, label-free gold nanoparticle-based colorimetric assay to detect BPA in a highly sensitive and selective manner. The aptasensor exhibits an LOD of 0.057 ng/mL and dynamic range of 105 (100 pg/mL to 10 mg/mL). With sensing capacity and biological stability, the developed aptasensor shows great potential to utilize in in-field applications such as water quality monitoring.
Collapse
Affiliation(s)
| | | | - Ruixan Lin
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea
| | - Vinayakumar Gedi
- Global Research Laboratory (GRL) for RNAi Medicine, Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Sunyoung Park
- Gangnam Biomedical Research Center, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Chul Woo Ahn
- Division of Endocrinology Department of Internal Medicine, Yonsei College of Medicine, Seoul 03722, Korea
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Dong-Ki Lee
- Global Research Laboratory (GRL) for RNAi Medicine, Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea
| | - Sangwook Lee
- PCL Inc., Seoul 05854, Korea
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan
| | - Soyoun Kim
- PCL Inc., Seoul 05854, Korea
- Convergence Research Institute, Korea University, Seoul 02841, Korea
| |
Collapse
|
2
|
Ren S, Shin HS, Gedi V, Dua P, Lee DK, Kim S. Selection of DNA Aptamers Against Botulinum Neurotoxin E for Development of Fluorescent Aptasensor. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Shuo Ren
- Department of Biomedical Engineering; Dongguk University; Seoul 100-715 Korea
| | - Hye-Soo Shin
- Global Research Laboratory (GRL) for RNAi Medicine, Department of Chemistry; Sungkyunkwan University; Suwon 16419 Korea
| | - Vinayakumar Gedi
- Global Research Laboratory (GRL) for RNAi Medicine, Department of Chemistry; Sungkyunkwan University; Suwon 16419 Korea
| | - Pooja Dua
- Global Research Laboratory (GRL) for RNAi Medicine, Department of Chemistry; Sungkyunkwan University; Suwon 16419 Korea
| | - Dong-Ki Lee
- Global Research Laboratory (GRL) for RNAi Medicine, Department of Chemistry; Sungkyunkwan University; Suwon 16419 Korea
| | - Soyoun Kim
- Department of Biomedical Engineering; Dongguk University; Seoul 100-715 Korea
| |
Collapse
|
3
|
Abstract
Detection of desired target chemicals in a sensitive and selective manner is critically important to protect human health, environment and national security. Nature has been a great source of inspiration for the design of sensitive and selective sensors. In this mini-review, we overview the recent developments in bio-inspired sensor development. There are four major components of sensor design: design of receptors for specific targets; coating materials to integrate receptors to transducing machinery; sensitive transducing of signals; and decision making based on the sensing results. We discuss the biomimetic methods to discover specific receptors followed by a discussion about bio-inspired nanocoating material design. We then review the recent developments in phage-based bioinspired transducing systems followed by a discussion of biomimetic pattern recognition-based decision making systems. Our review will be helpful to understand recent approaches to reverse-engineer natural systems to design specific and sensitive sensors.
Collapse
Affiliation(s)
- Ju Hun Lee
- Department of Bioengineering, University of California, Berkeley, USA.
| | | | | | | | | | | |
Collapse
|