1
|
Banyai AD, Brișan C. Robotics in Physical Rehabilitation: Systematic Review. Healthcare (Basel) 2024; 12:1720. [PMID: 39273744 PMCID: PMC11395122 DOI: 10.3390/healthcare12171720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
As the global prevalence of motor disabilities continues to rise, there is a pressing need for advanced solutions in physical rehabilitation. This systematic review examines the progress and challenges of implementing robotic technologies in the motor rehabilitation of patients with physical disabilities. The integration of robotic technologies such as exoskeletons, assistive training devices, and brain-computer interface systems holds significant promise for enhancing functional recovery and patient autonomy. The review synthesizes findings from the most important studies, focusing on the clinical effectiveness of robotic interventions in comparison to traditional rehabilitation methods. The analysis reveals that robotic therapies can significantly improve motor function, strength, co-ordination, and dexterity. Robotic systems also support neuroplasticity, enabling patients to relearn lost motor skills through precise, controlled, and repetitive exercises. However, the adoption of these technologies is hindered by high costs, the need for specialized training, and limited accessibility. Key insights from the review highlight the necessity of personalizing robotic therapies to meet individual patient needs, alongside addressing technical, economic, social, and cultural barriers. The review also underscores the importance of continued research to optimize these technologies and develop effective implementation strategies. By overcoming these challenges, robotic technologies can revolutionize motor rehabilitation, improving quality of life and social integration for individuals with motor disabilities.
Collapse
Affiliation(s)
- Adriana Daniela Banyai
- Department of Mechatronics and Machine Dynamics, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
| | - Cornel Brișan
- Department of Mechatronics and Machine Dynamics, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Johansen T, Sørensen L, Kolskår KK, Strøm V, Wouda MF. Effectiveness of robot-assisted arm exercise on arm and hand function in stroke survivors - A systematic review and meta-analysis. J Rehabil Assist Technol Eng 2023; 10:20556683231183639. [PMID: 37426037 PMCID: PMC10327418 DOI: 10.1177/20556683231183639] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Objective: To examine the treatment effect of commercially available robotic-assisted devices, compared to traditional occupational- and physiotherapy on arm and hand function in persons with stroke. Methods: A systematic literature search was conducted in Medline, EMBASE, CINAHL and Cochrane Central Register of Controlled Trials up to January 2022. Randomized controlled trials (RCT's) involving persons with stroke of all ages and robot-assisted exercise as method for arm and hand function, compared to traditional therapy methods were included. Three authors performed the selection independently. The quality of evidence across studies was assessed using GRADE. Results: Eighteen RCT's were included in the study. A random effects meta-analysis showed a statistically significantly higher treatment effect in the robotic-assisted exercise group (p=<0.0001) compared to the traditional treatment group, with a total effect size of 0.44 (CI = 0.22-0.65). Heterogeneity was high, measured with I2 of 65%). Subgroup analyses showed no significant effects of the type of robotic device, treatment frequency or duration of intervention. Discussion and conclusion: Even though the analysis showed significant improvement in arm and hand function in favor of the robotic-assisted exercise group, the results in this systematic review should be interpreted with caution. This is due to high heterogeneity among the studies included and the presence of possible publication bias. Results of this study highlight the need for larger and more methodological robust RCT's, with a focus on reporting training intensity during robotic exercise.
Collapse
Affiliation(s)
- Truls Johansen
- Department of Research, Sunnaas Rehabilitation Hospital, Oslo, Norway
| | - Linda Sørensen
- Department of Research, Sunnaas Rehabilitation Hospital, Oslo, Norway
- Department of Innovation, Sunnaas Rehabilitation Hospital, Oslo, Norway
| | - Knut K Kolskår
- Department of Research, Sunnaas Rehabilitation Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Vegard Strøm
- Department of Research, Sunnaas Rehabilitation Hospital, Oslo, Norway
| | - Matthijs F Wouda
- Department of Research, Sunnaas Rehabilitation Hospital, Oslo, Norway
| |
Collapse
|
3
|
Bressi F, Cricenti L, Campagnola B, Bravi M, Miccinilli S, Santacaterina F, Sterzi S, Straudi S, Agostini M, Paci M, Casanova E, Marino D, La Rosa G, Giansanti D, Perrero L, Battistini A, Filoni S, Sicari M, Petrozzino S, Solaro CM, Gargano S, Benanti P, Boldrini P, Bonaiuti D, Castelli E, Draicchio F, Falabella V, Galeri S, Gimigliano F, Grigioni M, Mazzoleni S, Mazzon S, Molteni F, Petrarca M, Picelli A, Posteraro F, Senatore M, Turchetti G, Morone G, Gallotti M, Germanotta M, Aprile I. Effects of robotic upper limb treatment after stroke on cognitive patterns: A systematic review. NeuroRehabilitation 2022; 51:541-558. [PMID: 36530099 PMCID: PMC9837692 DOI: 10.3233/nre-220149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Robotic therapy (RT) has been internationally recognized for the motor rehabilitation of the upper limb. Although it seems that RT can stimulate and promote neuroplasticity, the effectiveness of robotics in restoring cognitive deficits has been considered only in a few recent studies. OBJECTIVE To verify whether, in the current state of the literature, cognitive measures are used as inclusion or exclusion criteria and/or outcomes measures in robotic upper limb rehabilitation in stroke patients. METHODS The systematic review was conducted according to PRISMA guidelines. Studies eligible were identified through PubMed/MEDLINE and Web of Science from inception to March 2021. RESULTS Eighty-one studies were considered in this systematic review. Seventy-three studies have at least a cognitive inclusion or exclusion criteria, while only seven studies assessed cognitive outcomes. CONCLUSION Despite the high presence of cognitive instruments used for inclusion/exclusion criteria their heterogeneity did not allow the identification of a guideline for the evaluation of patients in different stroke stages. Therefore, although the heterogeneity and the low percentage of studies that included cognitive outcomes, seemed that the latter were positively influenced by RT in post-stroke rehabilitation. Future larger RCTs are needed to outline which cognitive scales are most suitable and their cut-off, as well as what cognitive outcome measures to use in the various stages of post-stroke rehabilitation.
Collapse
Affiliation(s)
- Federica Bressi
- Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University Polyclinic Foundation, Rome, Italy
| | - Laura Cricenti
- Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University Polyclinic Foundation, Rome, Italy
| | - Benedetta Campagnola
- Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University Polyclinic Foundation, Rome, Italy,Address for correspondence: Benedetta Campagnola, Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University Polyclinic Foundation, Rome, Italy. E-mail:
| | - Marco Bravi
- Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University Polyclinic Foundation, Rome, Italy
| | - Sandra Miccinilli
- Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University Polyclinic Foundation, Rome, Italy
| | - Fabio Santacaterina
- Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University Polyclinic Foundation, Rome, Italy
| | - Silvia Sterzi
- Physical Medicine and Rehabilitation Unit, Campus Bio-Medico University Polyclinic Foundation, Rome, Italy
| | - Sofia Straudi
- Department of Neuroscience and Rehabilitation, Ferrara University Hospital, Ferrara, Italy
| | | | - Matteo Paci
- AUSL (Unique Sanitary Local Company) District of Central Tuscany, Florence, Italy
| | - Emanuela Casanova
- Unità Operativa di Medicina Riabilitativa e Neuroriabilitazione (SC), IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Dario Marino
- IRCCS Neurolysis Center “Bonino Pulejo”, Messina, Italy
| | | | - Daniele Giansanti
- National Center for Innovative Technologies in Public Health, Italian National Institute of Health, Rome, Italy
| | - Luca Perrero
- Neurorehabilitation Unit, Azienda Ospedaliera Nazionale SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Alberto Battistini
- Unità Operativa di Medicina Riabilitativa e Neuroriabilitazione (SC), IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Serena Filoni
- Padre Pio Onlus Rehabilitation Centers Foundation, San Giovanni Rotondo, Italy
| | - Monica Sicari
- A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | | | | | | | | | - Paolo Boldrini
- Società Italiana di Medicina Fisica e Riabilitativa (SIMFER), Rome, Italy
| | | | - Enrico Castelli
- Department of Paediatric Neurorehabilitation, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Francesco Draicchio
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Rome, Italy
| | - Vincenzo Falabella
- Italian Federation of Persons with Spinal Cord Injuries (Faip Onlus), Rome, Italy
| | | | - Francesca Gimigliano
- Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Mauro Grigioni
- National Center for Innovative Technologies in Public Health, Italian National Institute of Health, Rome, Italy
| | - Stefano Mazzoleni
- Department of Electrical and Information Engineering, Politecnico di Bari, Bari, Italy
| | - Stefano Mazzon
- AULSS6 (Unique Sanitary Local Company) Euganea Padova – Distretto 4 “Alta Padovana”, Padua, Italy
| | - Franco Molteni
- Department of Rehabilitation Medicine, Villa Beretta Rehabilitation Center, Valduce Hospital, Lecco, Italy
| | - Maurizio Petrarca
- Movement Analysis and Robotics Laboratory (MARlab), IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Alessandro Picelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federico Posteraro
- Department of Rehabilitation, Versilia Hospital – AUSL12, Viareggio, Italy
| | - Michele Senatore
- Associazione Italiana dei Terapisti Occupazionali (AITO), Rome, Italy
| | | | | | | | | | - Irene Aprile
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | | |
Collapse
|
4
|
Lee KE, Choi M, Jeoung B. Effectiveness of Rehabilitation Exercise in Improving Physical Function of Stroke Patients: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12739. [PMID: 36232038 PMCID: PMC9566624 DOI: 10.3390/ijerph191912739] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Rehabilitation is a crucial part of recovery for stroke survivors, and numerous studies have examined various exercises and treatments of stroke. In addition, it is very important for patients to choose the timing of rehabilitation and what kind of rehabilitation they will proceed with. The purpose of the current study is to examine research investigating the effects of rehabilitation exercise programs in recovery of physical function in patients with stroke, based on aspects of their physical function, physical strength, and daily activities, and systematically examine their effects. Therefore, through systematic review, we have investigated the effects of interventions in rehabilitation exercise programs for recovery of physical function in patients with stroke. We collected relevant publications through the databases MEDLINE/PubMed and Google scholar. Twenty-one articles were ultimately selected for the analysis. We classified the rehabilitation programs and identified the trends of treatment for stroke survivors. Our review indicated that task-oriented therapy is still dominant, but various types of combined rehabilitations have been attempted. In addition, it was identified that physical and active rehabilitation were required rather than unconditional rest, even at an early stage. Home-based treatment was used for rapid recovery and adaptation to daily life during the mid-term period.
Collapse
Affiliation(s)
- Kyung Eun Lee
- Department Sport Industry Studies, Yonsei University, Seoul 03722, Korea
| | - Muncheong Choi
- Department Exercise Rehabilitation, Gachon University, Incheon 21936, Korea
| | - Bogja Jeoung
- Department Exercise Rehabilitation, Gachon University, Incheon 21936, Korea
| |
Collapse
|
5
|
Zhao M, Wang G, Wang A, Cheng LJ, Lau Y. Robot-assisted distal training improves upper limb dexterity and function after stroke: a systematic review and meta-regression. Neurol Sci 2022; 43:1641-1657. [PMID: 35089447 DOI: 10.1007/s10072-022-05913-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/23/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Stroke is one of the top 10 causes of death worldwide, and more than half of stroke patients face distal upper extremity dysfunction. Considering that robot-assisted training may be effective in improving distal upper extremity function, the review evaluated the effect of robot-assisted distal training on motor function, hand dexterity, and spasticity after stroke. METHODS Eleven databases were systematically searched for randomised controlled trials (RCTs) from inception until Aug 28, 2021. Meta-analysis and meta-regression were performed to investigate the overall effect and source of heterogeneity, respectively. RESULTS Twenty-two trials involving 758 participants were included in this systematic review. The overall effect of robot-assisted distal training on the motor function of the wrists and hands was significant improvement (MD = 3.92; 95% CI, 3.04-4.80; P < 0.001). The robot-assisted training had a significantly beneficial effect on other motor functions (MD = 2.84; 95% CI, 1.54-4.14; P < 0.001); dexterity (MD = 9.01; 95% CI, -12.07--5.95; P < 0.001), spasticity, upper extremity strength (SMD = 0.42; 95% CI, 0.07-0.78; P = 0.02) and activities of daily living (SMD = 0.70; 95% CI, 0.29-1.23; P < 0.001). A series of subgroup analyses showed preferable design and effective regime of training. Meta-regression indicated the statistically significant effect of the year of trial, country, and duration on the effectiveness of training. CONCLUSION Robot-assisted distal training has a significant effect on motor function, dexterity and spasticity of the upper extremity, compared to conventional therapy.
Collapse
Affiliation(s)
- Menglu Zhao
- The Affiliated Hospital of Qingdao University, Shandong, Qingdao, China
| | | | - Aimin Wang
- School of Nursing, Qingdao University, Qingdao, Shandong, China
| | - Ling Jie Cheng
- Health Systems and Behavioural Sciences Domain, Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Ying Lau
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Level 2, Block MD11, 10 Medical Drive, Singapore, 117597, Singapore.
| |
Collapse
|
6
|
Effectiveness of a New 3D-Printed Dynamic Hand-Wrist Splint on Hand Motor Function and Spasticity in Chronic Stroke Patients. J Clin Med 2021; 10:jcm10194549. [PMID: 34640564 PMCID: PMC8509791 DOI: 10.3390/jcm10194549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/24/2022] Open
Abstract
Spasticity, a common stroke complication, can result in impairments and limitations in the performance of activities and participation. In this study, we investigated the effectiveness of a new dynamic splint on wrist and finger flexor muscle spasticity in chronic stroke survivors, using a randomized controlled trial. Thirty chronic stroke survivors were recruited and randomly allocated to either an experimental or control group; 25 completed the 6-week intervention program. The participants in the experimental group were asked to wear the dynamic splint at least 6 h/day at home, for the entire intervention. The participants in the control group did not wear any splint. All the participants were evaluated 1 week before, immediately, and after 3 and 6 weeks of splint use, with the modified Ashworth scale and the Fugl−Meyer assessment for upper extremity. User experience was evaluated by a self-reported questionnaire after the 6-week intervention. The timed within-group assessments showed a significant reduction in spasticity and improvements in functional movements in the experimental group. We found differences, in favor of the experimental group, between the groups after the intervention. The splint users indicated a very good satisfaction rating for muscle tone reduction, comfort, and ease of use. Therefore, this new splint can be used for at-home rehabilitation in chronic stroke patients with hemiparesis.
Collapse
|
7
|
Wu J, Cheng H, Zhang J, Yang S, Cai S. Robot-Assisted Therapy for Upper Extremity Motor Impairment After Stroke: A Systematic Review and Meta-Analysis. Phys Ther 2021; 101:6103015. [PMID: 33454787 DOI: 10.1093/ptj/pzab010] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/31/2020] [Accepted: 12/06/2020] [Indexed: 01/02/2023]
Abstract
OBJECTIVE The purpose of this study was to review the effects of robot-assisted therapy (RT) for improving poststroke upper extremity motor impairment. METHODS The PubMed, Embase, Medline, and Web of Science databases were searched from inception to April 8, 2020. Randomized controlled trials that were conducted to evaluate the effects of RT on upper extremity motor impairment poststroke and that used Fugl-Meyer assessment for upper extremity scores as an outcome were included. Two authors independently screened articles, extracted data, and assessed the methodological quality of the included studies using the Physiotherapy Evidence Database (PEDro) scale. A random-effects meta-analysis was performed to pool the effect sizes across the studies. RESULTS Forty-one randomized controlled trials with 1916 stroke patients were included. Compared with dose-matched conventional rehabilitation, RT significantly improved the Fugl-Meyer assessment for upper extremity scores of the patients with stroke, with a small effect size (Hedges g = 0.25; 95% CI, 0.11-0.38; I2 = 45.9%). The subgroup analysis revealed that the effects of unilateral RT, but not that of bilateral RT, were superior to conventional rehabilitation (Hedges g = 0.32; 95% CI, 0.15-0.50; I2 = 55.9%). Regarding the type of robot devices, the effects of the end effector device (Hedges g = 0.22; 95% CI, 0.09-0.36; I2 = 35.4%), but not the exoskeleton device, were superior to conventional rehabilitation. Regarding the stroke stage, the between-group difference (ie, RT vs convention rehabilitation) was significant only for people with late subacute or chronic stroke (Hedges g = 0.33; 95% CI, 0.16-0.50; I2 = 34.2%). CONCLUSION RT might be superior to conventional rehabilitation in improving upper extremity motor impairment in people after stroke with notable upper extremity hemiplegia and limited potential for spontaneous recovery.
Collapse
Affiliation(s)
- Jingyi Wu
- Rehabilitation Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| | - Hao Cheng
- Rehabilitation Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| | - Jiaqi Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Shanli Yang
- Rehabilitation Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| | - Sufang Cai
- Rehabilitation Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| |
Collapse
|
8
|
Keeling AB, Piitz M, Semrau JA, Hill MD, Scott SH, Dukelow SP. Robot enhanced stroke therapy optimizes rehabilitation (RESTORE): a pilot study. J Neuroeng Rehabil 2021; 18:10. [PMID: 33478563 PMCID: PMC7819212 DOI: 10.1186/s12984-021-00804-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 01/08/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Robotic rehabilitation after stroke provides the potential to increase and carefully control dosage of therapy. Only a small number of studies, however, have examined robotic therapy in the first few weeks post-stroke. In this study we designed robotic upper extremity therapy tasks for the bilateral Kinarm Exoskeleton Lab and piloted them in individuals with subacute stroke. Pilot testing was focused mainly on the feasibility of implementing these new tasks, although we recorded a number of standardized outcome measures before and after training. METHODS Our team developed 9 robotic therapy tasks to incorporate feedback, intensity, challenge, and subject engagement as well as addressing both unimanual and bimanual arm activities. Subacute stroke participants were assigned to a robotic therapy (N = 9) or control group (N = 10) in a matched-group manner. The robotic therapy group completed 1-h of robotic therapy per day for 10 days in addition to standard therapy. The control group participated only in standard of care therapy. Clinical and robotic assessments were completed prior to and following the intervention. Clinical assessments included the Fugl-Meyer Assessment of Upper Extremity (FMA UE), Action Research Arm Test (ARAT) and Functional Independence Measure (FIM). Robotic assessments of upper limb sensorimotor function included a Visually Guided Reaching task and an Arm Position Matching task, among others. Paired sample t-tests were used to compare initial and final robotic therapy scores as well as pre- and post-clinical and robotic assessments. RESULTS Participants with subacute stroke (39.8 days post-stroke) completed the pilot study. Minimal adverse events occurred during the intervention and adding 1 h of robotic therapy was feasible. Clinical and robotic scores did not significantly differ between groups at baseline. Scores on the FMA UE, ARAT, FIM, and Visually Guided Reaching improved significantly in the robotic therapy group following completion of the robotic intervention. However, only FIM and Arm Position Match improved over the same time in the control group. CONCLUSIONS The Kinarm therapy tasks have the potential to improve outcomes in subacute stroke. Future studies are necessary to quantify the benefits of this robot-based therapy in a larger cohort. TRIAL REGISTRATION ClinicalTrials.gov, NCT04201613, Registered 17 December 2019-Retrospectively Registered, https://clinicaltrials.gov/ct2/show/NCT04201613 .
Collapse
Affiliation(s)
- Alexa B. Keeling
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada
| | - Mark Piitz
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada
| | - Jennifer A. Semrau
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE USA
| | - Michael D. Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada
| | - Stephen H. Scott
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON Canada
| | - Sean P. Dukelow
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada
| |
Collapse
|
9
|
Carswell C, Rea PM. What the Tech? The Management of Neurological Dysfunction Through the Use of Digital Technology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1317:131-145. [PMID: 33945135 DOI: 10.1007/978-3-030-61125-5_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Worldwide, it is estimated that millions of individuals suffer from a neurological disorder which can be the result of head injuries, ischaemic events such as a stroke, or neurodegenerative disorders such as Parkinson's disease (PD) and multiple sclerosis (MS). Problems with mobility and hemiparesis are common for these patients, making daily life, social factors and independence heavily affected. Current therapies aimed at improving such conditions are often tedious in nature, with patients often losing vital motivation and positive outlook towards their rehabilitation. The interest in the use of digital technology in neuro-rehabilitation has skyrocketed in the past decade. To gain insight, a systematic review of the literature in the field was conducting following the Preferred Reporting Items for Systematic Review and Meta-analyses (PRISMA) guidelines for three categories: stroke, Parkinson's disease and multiple sclerosis. It was found that the majority of the literature (84%) was in favour of the use of digital technologies in the management of neurological dysfunction; with some papers taking a "neutral" or "against" standpoint. It was found that the use of technologies such as virtual reality (VR), robotics, wearable sensors and telehealth was highly accepted by patients, helped to improve function, reduced anxiety and make therapy more accessible to patients living in more remote areas. The most successful therapies were those that used a combination of conventional therapies and new digital technologies.
Collapse
Affiliation(s)
- Caitlin Carswell
- Anatomy Facility, School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Paul M Rea
- School of Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
10
|
Hung CS, Lin KC, Chang WY, Huang WC, Chang YJ, Chen CL, Grace Yao K, Lee YY. Unilateral vs Bilateral Hybrid Approaches for Upper Limb Rehabilitation in Chronic Stroke: A Randomized Controlled Trial. Arch Phys Med Rehabil 2019; 100:2225-2232. [PMID: 31421096 DOI: 10.1016/j.apmr.2019.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 06/18/2019] [Accepted: 06/30/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To investigate the effects of unilateral hybrid therapy (UHT) and bilateral hybrid therapy (BHT) compared with robot-assisted therapy (RT) alone in patients with chronic stroke. DESIGN A single-blind, randomized controlled trial. SETTING Four hospitals. PARTICIPANTS Outpatients with chronic stroke and mild to moderate motor impairment (N=44). INTERVENTION UHT combined unilateral RT (URT) and modified constraint-induced therapy. BHT combined bilateral RT (BRT) and bilateral arm training. The RT group received URT and BRT. The intervention frequency for the 3 groups was 90 min/d 3 d/wk for 6 weeks. MAIN OUTCOME MEASURES Fugl-Meyer Assessment (FMA, divided into the proximal and distal subscale) and Stroke Impact Scale (SIS) version 3.0 scores before, immediately after, and 3 months after treatment and Wolf Motor Function Test (WMFT) and Nottingham Extended Activities of Daily Living (NEADL) scale scores before and immediately after treatment. RESULTS The results favored BHT over UHT on the FMA total score and distal score at the posttest (P=.03 and .04) and follow-up (P=.01 and .047) assessment and BHT over RT on the follow-up FMA distal scores (P=.03). At the posttest assessment, the WMFT and SIS scores of the 3 groups improved significantly without between-group differences, and the RT group showed significantly greater improvement in the mobility domain of NEADL compared with the BHT group (P<.01). CONCLUSIONS BHT was more effective for improving upper extremity motor function, particularly distal motor function at follow-up, and individuals in the RT group demonstrated improved functional ambulation post intervention.
Collapse
Affiliation(s)
- Chung-Shan Hung
- Department of Community and Aging, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Keh-Chung Lin
- School of Occupational Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan; Division of Occupational Therapy, Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan.
| | - Wan-Ying Chang
- Division of Occupational Therapy, Department of Physical Medicine and Rehabilitation, Taipei Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
| | - Wen-Chih Huang
- Division of Occupational Therapy, Department of Physical Medicine and Rehabilitation, Miaoli General Hospital, Ministry of Health and Welfare, Miaoli, Taiwan
| | - Ya-Ju Chang
- Physical Therapy Department and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Ling Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taiwan; Graduate Institute of Early Intervention, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kaiping Grace Yao
- Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan
| | - Ya-Yun Lee
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|