1
|
Qian X, Zhang H, Xiang C. Recombinant human growth hormone in the treatment of C.836A/G-caused short stature in a girl: a case report and literature review. Transl Pediatr 2022; 11:774-780. [PMID: 35685070 PMCID: PMC9173874 DOI: 10.21037/tp-22-174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/18/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND When we treated the C.836A/G-caused short stature girls with rhGH (recombinant growth hormone) for short stature, the effect of height improvement was good, but in the course of treatment, there was a side effect of leukopenia, which led to the interruption of treatment. We consult the literature, did not find such relevant reports, therefore, the objective of this study is to share the novel treatment method of C.836A/G-caused short stature and report the treatment response and adverse events of the child with C.836A/G-caused short stature. CASE DESCRIPTION The clinical data of 1 child with C.836A/G-caused short stature were collected, and the efficacy of rhGH in the treatment of this child was observed. The female child aged 5 years and 5 months old was treated at our hospital for growth retardation of >5 years. The child was a slightly picky eater, had good sleep quality (she often fell asleep after 21:00), and did not exercise much before the age of 3-4 years. Routine blood results and other relevant indicators were also monitored during the treatment. The growth rate of the child was followed up over a period of 16 months using needle withdrawal, and routine blood examinations were conducted regularly. With the application of rhGH, the child with C.836A/G-caused short stature gained 9.6 cm in height at 11 months, and had a height of standard deviation score of -1.01. Throughout the treatment, the blood hemoglobin and platelets of the child were normal, but the content of the granulocytes was lower than the normal value. Some 16 months after the discontinuation of the rhGH therapy, the granulocytes gradually returned to the normal range, but the growth rate of the child declined obviously. CONCLUSIONS Recombinant growth hormone treatment of this case of C.836A/G-caused short stature is effective, but in the course of treatment, we need to pay attention to the side effects of the hematological system. Due to our limited clinical experience with these cases, please correct us for any inaccuracies.
Collapse
Affiliation(s)
- Xiaoxia Qian
- Department of Pediatrics, Shengzhou People's Hospital (The First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, China
| | - Huangping Zhang
- Department of Pediatrics, Shengzhou People's Hospital (The First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, China
| | - Caixia Xiang
- Department of Pediatrics, Shengzhou People's Hospital (The First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, China
| |
Collapse
|
2
|
Warnecke A, Giesemann A. Embryology, Malformations, and Rare Diseases of the Cochlea. Laryngorhinootologie 2021; 100:S1-S43. [PMID: 34352899 PMCID: PMC8354575 DOI: 10.1055/a-1349-3824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Despite the low overall prevalence of individual rare diseases, cochlear
dysfunction leading to hearing loss represents a symptom in a large
proportion. The aim of this work was to provide a clear overview of rare
cochlear diseases, taking into account the embryonic development of the
cochlea and the systematic presentation of the different disorders. Although
rapid biotechnological and bioinformatic advances may facilitate the
diagnosis of a rare disease, an interdisciplinary exchange is often required
to raise the suspicion of a rare disease. It is important to recognize that
the phenotype of rare inner ear diseases can vary greatly not only in
non-syndromic but also in syndromic hearing disorders. Finally, it becomes
clear that the phenotype of the individual rare diseases cannot be
determined exclusively by classical genetics even in monogenetic
disorders.
Collapse
Affiliation(s)
- Athanasia Warnecke
- Klinik für Hals-, Nasen- und Ohrenheilkunde, Medizinische Hochschule Hannover, Carl-Neuberg-Straße 1, 30625 Hannover.,Deutsche Forschungsgemeinschaft Exzellenzcluster"Hearing4all" - EXC 2177/1 - Project ID 390895286
| | - Anja Giesemann
- Institut für Neuroradiologie, Medizinische Hochschule Hannover, Carl-Neuberg-Straße 1, 30625 Hannover
| |
Collapse
|
3
|
Lee TL, Lin PH, Chen PL, Hong JB, Wu CC. Hereditary Hearing Impairment with Cutaneous Abnormalities. Genes (Basel) 2020; 12:43. [PMID: 33396879 PMCID: PMC7823799 DOI: 10.3390/genes12010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 12/15/2022] Open
Abstract
Syndromic hereditary hearing impairment (HHI) is a clinically and etiologically diverse condition that has a profound influence on affected individuals and their families. As cutaneous findings are more apparent than hearing-related symptoms to clinicians and, more importantly, to caregivers of affected infants and young individuals, establishing a correlation map of skin manifestations and their underlying genetic causes is key to early identification and diagnosis of syndromic HHI. In this article, we performed a comprehensive PubMed database search on syndromic HHI with cutaneous abnormalities, and reviewed a total of 260 relevant publications. Our in-depth analyses revealed that the cutaneous manifestations associated with HHI could be classified into three categories: pigment, hyperkeratosis/nail, and connective tissue disorders, with each category involving distinct molecular pathogenesis mechanisms. This outline could help clinicians and researchers build a clear atlas regarding the phenotypic features and pathogenetic mechanisms of syndromic HHI with cutaneous abnormalities, and facilitate clinical and molecular diagnoses of these conditions.
Collapse
Affiliation(s)
- Tung-Lin Lee
- Department of Medical Education, National Taiwan University Hospital, Taipei City 100, Taiwan;
| | - Pei-Hsuan Lin
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 11556, Taiwan;
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei City 100, Taiwan;
| | - Pei-Lung Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei City 100, Taiwan;
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei City 100, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10041, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10041, Taiwan
| | - Jin-Bon Hong
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei City 100, Taiwan
- Department of Dermatology, National Taiwan University Hospital, Taipei City 100, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 11556, Taiwan;
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei City 100, Taiwan;
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10041, Taiwan
- Department of Medical Research, National Taiwan University Biomedical Park Hospital, Hsinchu City 300, Taiwan
| |
Collapse
|
4
|
Moatamedi M, Derakhshan M. LEOPARD syndrome: a case report and literature review. Clin Med (Lond) 2019. [DOI: 10.7861/clinmedicine.19-3-s23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Moatamedi M, Derakhshan M. LEOPARD syndrome: a case report and literature review. Clin Med (Lond) 2019. [DOI: 10.7861/clinmedicine.19-3s-s23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Rodríguez-de la Rosa L, Lassaletta L, Calvino M, Murillo-Cuesta S, Varela-Nieto I. The Role of Insulin-Like Growth Factor 1 in the Progression of Age-Related Hearing Loss. Front Aging Neurosci 2017; 9:411. [PMID: 29311900 PMCID: PMC5733003 DOI: 10.3389/fnagi.2017.00411] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/27/2017] [Indexed: 12/21/2022] Open
Abstract
Aging is associated with impairment of sensorial functions and with the onset of neurodegenerative diseases. As pari passu circulating insulin-like growth factor 1 (IGF-1) bioavailability progressively decreases, we see a direct correlation with sensory impairment and cognitive performance in older humans. Age-related sensory loss is typically caused by the irreversible death of highly differentiated neurons and sensory receptor cells. Among sensory deficits, age-related hearing loss (ARHL), also named presbycusis, affects one third of the population over 65 years of age and is a major factor in the progression of cognitive problems in the elderly. The genetic and molecular bases of ARHL are largely unknown and only a few genes related to susceptibility to oxidative stress, excitotoxicity, and cell death have been identified. IGF-1 is known to be a neuroprotective agent that maintains cellular metabolism, activates growth, proliferation and differentiation, and limits cell death. Inborn IGF-1 deficiency leads to profound sensorineural hearing loss both in humans and mice. IGF-1 haploinsufficiency has also been shown to correlate with ARHL. There is not much information available on the effect of IGF-1 deficiency on other human sensory systems, but experimental models show a long-term impact on the retina. A secondary action of IGF-1 is the control of oxidative stress and inflammation, thus helping to resolve damage situations, acute or made chronic by aging. Here we will review the primary actions of IGF-1 in the auditory system and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Lourdes Rodríguez-de la Rosa
- “Alberto Sols” Biomedical Research Institute CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Luis Lassaletta
- “Alberto Sols” Biomedical Research Institute CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Otorhinolaryngology Department, Hospital La Paz, Madrid, Spain
| | - Miryam Calvino
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Otorhinolaryngology Department, Hospital La Paz, Madrid, Spain
| | - Silvia Murillo-Cuesta
- “Alberto Sols” Biomedical Research Institute CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Isabel Varela-Nieto
- “Alberto Sols” Biomedical Research Institute CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| |
Collapse
|
7
|
Phenotypical diversity of patients with LEOPARD syndrome carrying the worldwide recurrent p.Tyr279Cys PTPN11 mutation. Arch Dermatol Res 2015; 307:891-5. [DOI: 10.1007/s00403-015-1597-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/31/2015] [Accepted: 09/04/2015] [Indexed: 01/17/2023]
|
8
|
Seo HS, Lee IH, Song YW, Choi BM, Jang GY, Son CS, Lee JW. A Case of Congenital Hypertrophic Cardiomyopathy. Korean Circ J 2013; 43:54-6. [PMID: 23407623 PMCID: PMC3569568 DOI: 10.4070/kcj.2013.43.1.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/31/2012] [Accepted: 08/06/2012] [Indexed: 11/11/2022] Open
Abstract
Congenital hypertrophic cardiomyopathy (HCMP) is a very rare congenital heart disease. Here, we report a case of neonatal HCMP, which was confirmed by two-dimensional echocardiography and autopsy. The HCMP rapidly progressed and the patient's condition deteriorated, despite the treatment for congestive heart failure.
Collapse
Affiliation(s)
- Hyeon Seok Seo
- Department of Pediatrics, Korea University Hospital, Seoul, Korea
| | - In Hak Lee
- Department of Pediatrics, Korea University Hospital, Seoul, Korea
| | - Young Wooh Song
- Department of Pediatrics, Korea University Hospital, Seoul, Korea
| | - Byung Min Choi
- Department of Pediatrics, Korea University Hospital, Seoul, Korea
| | - Gi Young Jang
- Department of Pediatrics, Korea University Hospital, Seoul, Korea
| | - Chang Sung Son
- Department of Pediatrics, Korea University Hospital, Seoul, Korea
| | - Joo Won Lee
- Department of Pediatrics, Korea University Hospital, Seoul, Korea
| |
Collapse
|
9
|
Martínez-Quintana E, Rodríguez-González F. LEOPARD Syndrome: Clinical Features and Gene Mutations. Mol Syndromol 2012; 3:145-57. [PMID: 23239957 DOI: 10.1159/000342251] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2012] [Indexed: 12/21/2022] Open
Abstract
The RAS/MAPK pathway proteins with germline mutations in their respective genes are associated with some disorders such as Noonan, LEOPARD (LS), neurofibromatosis type 1, Costello and cardio-facio-cutaneous syndromes. LEOPARD is an acronym, mnemonic for the major manifestations of this disorder, characterized by multiple lentigines, electrocardiographic abnormalities, ocular hypertelorism, pulmonic stenosis, abnormal genitalia, retardation of growth, and sensorineural deafness. Though it is not included in the acronym, hypertrophic cardiomyopathy is the most frequent cardiac anomaly observed, representing a potentially life-threatening problem in these patients. PTPN11, RAF1 and BRAF are the genes known to be associated with LS, identifying molecular genetic testing of the 3 gene mutations in about 95% of affected individuals. PTPN11 mutations are the most frequently found. Eleven different missense PTPN11 mutations (Tyr279Cys/Ser, Ala461Thr, Gly464Ala, Thr468Met/Pro, Arg498Trp/Leu, Gln506Pro, and Gln510Glu/Pro) have been reported so far in LS, 2 of which (Tyr279Cys and Thr468Met) occur in about 65% of the cases. Here, we provide an overview of clinical aspects of this disorder, the molecular mechanisms underlying pathogenesis and major genotype-phenotype correlations.
Collapse
Affiliation(s)
- E Martínez-Quintana
- Cardiology Service, Complejo Hospitalario Universitario Insular-Materno Infantil, Las Palmas de Gran Canaria, Spain
| | | |
Collapse
|