1
|
Wang Y, LaRocque LM, Ruiz JA, Rodriguez EL, Sands JM, Klein JD. Aldosterone Contributes to Vasopressin Escape through Changes in Water and Urea Transport. Biomedicines 2023; 11:1844. [PMID: 37509484 PMCID: PMC10376660 DOI: 10.3390/biomedicines11071844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Hyponatremia (hypo-osmolality) is a disorder of water homeostasis due to abnormal renal diluting capacity. The body limits the degree to which serum sodium concentration falls through a mechanism called "vasopressin escape". Vasopressin escape is a process that prevents the continuous decrease in serum sodium concentration even under conditions of sustained high plasma vasopressin levels. Previous reports suggest that aldosterone may be involved in the vasopressin escape mechanism. The abilities of aldosterone synthase (Cyp11b2) knockout and wild-type mice to escape from vasopressin were compared. Wild-type mice escaped while the aldosterone synthase knockout mice did not. Both the water channel aquaporin 2 (AQP2) and the urea transporter UT-A1 protein abundances were higher in aldosterone synthase knockout than in wild-type mice at the end of the escape period. Vasopressin escape was also blunted in rats given spironolactone, a mineralocorticoid receptor blocker. Next, the role of the phosphatase, calcineurin (protein phosphatase 2B, PP2B), in vasopressin escape was studied since aldosterone activates calcineurin in rat cortical collecting ducts. Tacrolimus, a calcineurin inhibitor, blunted vasopressin escape in rats compared with the control rats, increased UT-A1, AQP2, and pS256-AQP2, and decreased pS261-AQP2 protein abundances. Our results indicate that aldosterone regulates vasopressin escape through calcineurin-mediated protein changes in UT-A1 and AQP2.
Collapse
Affiliation(s)
- Yanhua Wang
- Renal Division, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Lauren M LaRocque
- Renal Division, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Joseph A Ruiz
- Renal Division, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Eva L Rodriguez
- Renal Division, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Jeff M Sands
- Renal Division, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Janet D Klein
- Renal Division, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
2
|
Sánchez-Solís CN, Cuevas Romero E, Soto-Rodríguez I, de Lourdes Arteaga-Castañeda M, De León-Ramírez YM, Rodríguez-Antolín J, Nicolás-Toledo L. High-sucrose diet potentiates hyperaldosteronism and renal injury induced by stress in young adult rats. Clin Exp Pharmacol Physiol 2020; 47:1985-1994. [PMID: 32911579 DOI: 10.1111/1440-1681.13394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 11/27/2022]
Abstract
Analyze the effect of stress and high-sucrose diet on serum aldosterone levels and the morphometric characteristics of the kidney in young adult rats. Wistar male rats aged 21 days old weaned were randomly assigned into four groups: control (C), stressed (St), high-sucrose diet (S30), and chronic restraint stress plus a 30% sucrose diet (St + S30). Rats were fed with a standard chow and tap water ad libitum (C group) or 30% sucrose diluted in water (S30 group) during eight weeks. The St and St + S30 groups were subject to restraint stress (1-hour daily in a plastic cylinder, 5 days per week), four weeks before euthanasia. At 81 days old, all animals were killed and blood samples and kidneys were collected. Stressed rats had an increase in the serum aldosterone and renal triacylglycerol, a decrease in the area of the renal corpuscle, glomeruli, proximal tubules, and aquaporin 2 expressions with loss of glomeruli. For its part, the high-sucrose diet decreased the area of the renal corpuscle, glomeruli, and aquaporin 2 expressions in the cortex. The combination of stress and high- sucrose diet maintained similar effects on the kidney as the stress alone, although it induced an increase in the creatinine levels and renal glycogen. Our results showed that chronic stress induces hyperaldosteronism and kidney injury. The intake of a high-sucrose diet may potentiate the renal injury promoted by stress.
Collapse
Affiliation(s)
| | - Estela Cuevas Romero
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | | | | | | | - Jorge Rodríguez-Antolín
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Leticia Nicolás-Toledo
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| |
Collapse
|
3
|
Wang Y, Ma F, Rodriguez EL, Klein JD, Sands JM. Aldosterone Decreases Vasopressin-Stimulated Water Reabsorption in Rat Inner Medullary Collecting Ducts. Cells 2020; 9:cells9040967. [PMID: 32295252 PMCID: PMC7226978 DOI: 10.3390/cells9040967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 11/27/2022] Open
Abstract
Aldosterone indirectly regulates water reabsorption in the distal tubule by regulating sodium reabsorption. However, the direct effect of aldosterone on vasopressin-regulated water and urea permeability in the rat inner medullary collecting duct (IMCD) has not been tested. We investigated whether aldosterone regulates osmotic water permeability in isolated perfused rat IMCDs. Adding aldosterone (500 nM) to the bath significantly decreased osmotic water permeability in the presence of vasopressin (50 pM) in both male and female rat IMCDs. Aldosterone significantly decreased aquaporin-2 (AQP2) phosphorylation at S256 but did not change it at S261. Previous studies show that aldosterone can act both genomically and non-genomically. We tested the mechanism by which aldosterone attenuates osmotic water permeability. Blockade of gene transcription with actinomycin D did not reverse aldosterone-attenuated osmotic water permeability. In addition to AQP2, the urea transporter UT-A1 contributes to vasopressin-regulated urine concentrating ability. We tested aldosterone-regulated urea permeability in vasopressin-treated IMCDs. Blockade of gene transcription did not reverse aldosterone-attenuated urea permeability. In conclusion, aldosterone directly regulates water reabsorption through a non-genomic mechanism. Aldosterone-attenuated water reabsorption may be related to decreased trafficking of AQP2 to the plasma membrane. There may be a sex difference apparent in the inhibitory effect of aldosterone on water reabsorption in the inner medullary collecting duct. This study is the first to show a direct effect of aldosterone to inhibit vasopressin-stimulated osmotic water permeability and urea permeability in perfused rat IMCDs.
Collapse
Affiliation(s)
| | | | | | | | - Jeff M. Sands
- Correspondence: ; Tel.: +1-404-7272-525; Fax: +1-404-7273-425
| |
Collapse
|
4
|
Cheung PW, Bouley R, Brown D. Targeting the Trafficking of Kidney Water Channels for Therapeutic Benefit. Annu Rev Pharmacol Toxicol 2020; 60:175-194. [PMID: 31561739 PMCID: PMC7334826 DOI: 10.1146/annurev-pharmtox-010919-023654] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The ability to regulate water movement is vital for the survival of cells and organisms. In addition to passively crossing lipid bilayers by diffusion, water transport is also driven across cell membranes by osmotic gradients through aquaporin water channels. There are 13 aquaporins in human tissues, and of these, aquaporin-2 (AQP2) is the most highly regulated water channel in the kidney: The expression and trafficking of AQP2 respond to body volume status and plasma osmolality via the antidiuretic hormone, vasopressin (VP). Dysfunctional VP signaling in renal epithelial cells contributes to disorders of water balance, and research initially focused on regulating the major cAMP/PKA pathway to normalize urine concentrating ability. With the discovery of novel and more complex signaling networks that regulate AQP2 trafficking, promising therapeutic targets have since been identified. Several strategies based on data from preclinical studies may ultimately translate to the care of patients with defective water homeostasis.
Collapse
Affiliation(s)
- Pui W. Cheung
- Center for Systems Biology, Program in Membrane Biology, and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Richard Bouley
- Center for Systems Biology, Program in Membrane Biology, and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Dennis Brown
- Center for Systems Biology, Program in Membrane Biology, and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
5
|
Jo CH, Kim S, Kim GH. Association of Proteinuria with Urinary Concentration Defect in Puromycin Aminonucleoside Nephrosis. Electrolyte Blood Press 2020; 18:31-39. [PMID: 33408745 PMCID: PMC7781767 DOI: 10.5049/ebp.2020.18.2.31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 11/05/2022] Open
Affiliation(s)
- Chor Ho Jo
- Institute of Biomedical Science, Hanyang University College of Medicine, Seoul, Korea
| | - Sua Kim
- Institute of Biomedical Science, Hanyang University College of Medicine, Seoul, Korea
| | - Gheun-Ho Kim
- Institute of Biomedical Science, Hanyang University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Sisto M, Ribatti D, Lisi S. Aquaporin water channels: New perspectives on the potential role in inflammation. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:311-345. [PMID: 31036295 DOI: 10.1016/bs.apcsb.2018.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aquaporins (AQPs) are a family of membrane water channel proteins that osmotically modulate water fluid homeostasis in several tissues; some of them also transport small solutes such as glycerol. At the cellular level, the AQPs regulate not only cell migration and transepithelial fluid transport across membranes, but also common events that are crucial for the inflammatory response. Emerging data reveal a new function of AQPs in the inflammatory process, as demonstrated by their dysregulation in a wide range of inflammatory diseases including edematous states, cancer, obesity, wound healing and several autoimmune diseases. This chapter summarizes the discoveries made so far about the structure and functions of the AQPs and provides updated information on the underlying mechanisms of AQPs in several human inflammatory diseases. The discovery of new functions for AQPs opens new vistas offering promise for the discovery of mechanisms and therapeutic opportunities in inflammatory disorders.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs (SMBNOS), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Bari, Italy.
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs (SMBNOS), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Bari, Italy
| | - Sabrina Lisi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs (SMBNOS), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
7
|
Dang VD, Jella KK, Ragheb RRT, Denslow ND, Alli AA. Lipidomic and proteomic analysis of exosomes from mouse cortical collecting duct cells. FASEB J 2017; 31:5399-5408. [PMID: 28821634 DOI: 10.1096/fj.201700417r] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 07/25/2017] [Indexed: 12/13/2022]
Abstract
Exosomes are endosome-derived nanovesicles that are involved in cellular communication and signaling. Exosomes are produced by epithelial cells and are found in biologic fluids including blood and urine. The packaged material within exosomes includes proteins and lipids, but the molecular comparison within exosome subtypes is largely unknown. The purpose of this study was to investigate differences between exosomes derived from the apical plasma membrane and basolateral plasma membrane of polarized murine cortical collecting duct principal cells. Nanoparticle tracking analysis showed that the size and concentration of apical and basolateral exosomes remained relatively stable across 3 different temperatures (23, 37, and 42°C). Liquid chromatography-tandem mass spectrometry analysis revealed marked differences between the proteins packaged within the two types of exosomes from the same cells. Several proteins expressed at the inner leaflet of the plasma membrane, including α-actinin-1, moesin, 14-3-3 protein ζ/δ, annexin A1/A3/A4/A5/A6, clathrin heavy chain 1, glyceraldehyde-3-phosphate dehydrogenase, α-enolase, filamin-A, and heat shock protein 90, were identified in samples of apical plasma membrane-derived exosomes, but not in basolateral plasma membrane exosomes from mouse cortical collecting duct cells. In addition to differences at the protein level, mass spectrometry-based shotgun lipidomics analysis showed significant differences in the lipid classes and fatty acid composition of the two types of exosomes. We found higher levels of sphingomyelin and lower levels of cardiolipin, among other phospholipids in the apical plasma membrane compared to the basolateral plasma membrane exosomes. The molecular analyses of exosome subtypes presented herein will contribute to our understanding of exosome biogenesis, and the results may have potential implications for biomarker discovery.-Dang, V. D., Jella, K. K., Ragheb, R. R. T., Denslow, N. D., Alli, A. A. Lipidomic and proteomic analysis of exosomes from mouse cortical collecting duct cells.
Collapse
Affiliation(s)
- Viet D Dang
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA.,Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA.,Department of Veterinary Diagnostic and Production Animal Production, Iowa State University, Ames, Iowa, USA
| | - Kishore Kumar Jella
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Nancy D Denslow
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA.,Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
| | - Abdel A Alli
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida, USA; .,Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
8
|
Loh SY, Giribabu N, Salleh N. Effects of gonadectomy and testosterone treatment on aquaporin expression in the kidney of normotensive and hypertensive rats. Exp Biol Med (Maywood) 2017; 242:1376-1386. [PMID: 28399644 DOI: 10.1177/1535370217703360] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We tested the hypothesis that testosterone-induced increase in blood pressure was due to changes in aquaporin (AQP) expression in kidneys. In this study, expression level of kidney AQPs was investigated under testosterone influence. Adult normotensive Wistar Kyoto (WKY) and hypertensive SHR male and female rats underwent gonadectomy. For female rats, testosterone was given for six weeks duration, two weeks following ovariectomy via subcutaneous silastic implant. Mean arterial pressure (MAP) was measured in all the rats after eight weeks via carotid artery cannulation and the rats were then sacrificed and kidneys were harvested for analyses of AQP-1, 2, 3, 4, 6, and 7 mRNA and protein expressions by quantitative real-time PCR and Western blotting, respectively. Distribution of AQP subunits' protein in kidneys was observed by immunofluorescence. In male WKY rats, MAP, AQP-1, 2, 4, and 7 protein; and mRNA expression decreased however AQP-3 protein and mRNA expression increased following orchidectomy. The vice versa effects were observed in testosterone-treated ovariectomized female WKY rats. However, no changes in AQP-6 expression were observed. Meanwhile, in adult male SHR rats, MAP and expression level of all AQP subunits decreased following orchidectomy. The opposite effects were seen in ovariectomized female SHR rats following testosterone treatment. Immunofluorescence study showed AQP-1 and AQP-7 were distributed in the proximal convoluted tubules (PCT) while AQP-2, AQP-4, and AQP-6 were distributed in the collecting ducts (CDs). AQP-3 was distributed in the PCT and CD. In conclusion, changes in AQP subunit expression in kidneys could explain changes in blood pressure under testosterone influence. Impact statement This study provides fundamental understanding on the mechanisms underlying testosterone-induced increase in blood pressure which involve regulation of aquaporin channel subunits in the kidneys. A better understanding of this issue can help to explain the reason for higher blood pressure in males as compared to females and may explain the reason for higher blood pressure in females after menopause than females before menopause, the former most probably related to the changes in female androgen.
Collapse
Affiliation(s)
- Su Yi Loh
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Nelli Giribabu
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
9
|
Zhang J, Sun Y, Zhang S, Gao Y, Wang Z, Liu X, Yang J, Li Y. Influence of Sanao Tang on urine volume and expression of aquaporin 2 in rats with respiratory function impairment induced by passive
smoking and lipopolysaccharide. J TRADIT CHIN MED 2016; 36:749-55. [PMID: 29949706 DOI: 10.1016/s0254-6272(17)30010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To investigate the effect of Sanao Tang (SAT) on urine volume and the expression of aquaporin- 2 (AQP2) in rats with lung dysfunction induced by passive smoking and lipopolysaccharide. METHODS Totally 45 healthy Specific pathogen Free Wistar Rats were randomized into 3 groups: normal control group, model group and SAT group. A rat model of respiratory dysfunction induced by exposure to cigarette smoking and lipopolysaccharide (LPS). Lavage of decoction of the Chinese medicine was performed for rats in the SAT group. Anires 2005 System was used to analyze the pulmonary function. Urine of rats was collected through metabolism cage method. Enzyme-linked immunosorbent assay (ELISA) was used to determine content of antidiuretic hormone (ADH), angiotensin Ⅱ (AngⅡ), atrial natriuretic factor (ANP), endothelin 1 (ET-1), nitric oxide (NO) and prostaglandin E2 (PGE2) in serum, lung and kidney. The expression of AQP2 in rat renal tissue was determined with real-time fluorescence quantitative PCR (RT-PCR). RESULTS (a) In comparison with the normal control, It was found that enforced vital capacity (FVC), 1-second forced expiratory volume/forced vital capacity% (FEV(1)/FVC%), 24 h urine volume content of NO and PGE2 were decreased, while AQP2mRNA level and content of ADH, Agn Ⅱ, ANP and ET-1 were increased in the model group with statistical significance (P < 0.05). (b) In comparison with the model group, It was found that FVC, FEV(1), FEV(1)/FVC%, 24 h urine volume, content of PGE2 and NO decreased, while AQP2mRNA level, content of ANP, ADH and Ang Ⅱ decreased in the SAT group with statistical significance (P < 0.05). CONCLUSION SAT might effectively regulate the urine volume in the modeled rats; ADH, Ang Ⅱ, ANP, ET-1, NO and PGE2 might play an important role in the regulation on urine volume by lungs. This might be the mechanisms underpinning the function of lung governing water passage in terms of the theory of Traditional Chinese Medicine.
Collapse
|
10
|
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a signalopathy of renal tubular epithelial cells caused by naturally occurring mutations in two distinct genes, polycystic kidney disease 1 (PKD1) and 2 (PKD2). Genetic variants in PKD1, which encodes the polycystin-1 (PC-1) protein, remain the predominant factor associated with the pathogenesis of nearly two-thirds of all patients diagnosed with PKD. Although the relationship between defective PC-1 with renal cystic disease initiation and progression remains to be fully elucidated, there are numerous clinical studies that have focused upon the control of effector systems involving heterotrimeric G protein regulation. A major regulator in the activation state of heterotrimeric G proteins are G protein-coupled receptors (GPCRs), which are defined by their seven transmembrane-spanning regions. PC-1 has been considered to function as an unconventional GPCR, but the mechanisms by which PC-1 controls signal processing, magnitude, or trafficking through heterotrimeric G proteins remains to be fully known. The diversity of heterotrimeric G protein signaling in PKD is further complicated by the presence of non-GPCR proteins in the membrane or cytoplasm that also modulate the functional state of heterotrimeric G proteins within the cell. Moreover, PC-1 abnormalities promote changes in hormonal systems that ultimately interact with distinct GPCRs in the kidney to potentially amplify or antagonize signaling output from PC-1. This review will focus upon the canonical and noncanonical signaling pathways that have been described in PKD with specific emphasis on which heterotrimeric G proteins are involved in the pathological reorganization of the tubular epithelial cell architecture to exacerbate renal cystogenic pathways.
Collapse
Affiliation(s)
- Taketsugu Hama
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
11
|
Lee YJ, Lee SM, Cui X, Yoon JJ, Oh HC, Kim YC, Park MC, Kang DG, Lee HS. Quantitative evaluation of Oryeongsan and its action on water regulation in renal inner medullary collecting duct cells. JOURNAL OF ETHNOPHARMACOLOGY 2016; 185:310-318. [PMID: 26979340 DOI: 10.1016/j.jep.2016.03.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 02/03/2016] [Accepted: 03/11/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Oryeongsan (ORS, Wulingsan) has been reported to possess renal protective effects from renal diseases such as diabetes-induced renal damage, and nephrocalcinosis. AIM OF THE STUDY This study was conducted to evaluate the quantitative analysis and the inhibitory effect of ORS on hypertonic stress-induced water channel and apoptosis in murine inner medullary collecting duct cell line (mIMCD-3). MATERIALS AND METHODS Chromatographic and NMR spectroscopic analysis were performed and water balance regulation was determined by Western blot, RT-PCR, and immunofluorescnece. RESULTS Seven active principles (5-hydroxymethylfurfural, alismoxide, methyl(-)trans-cinnamate, adenine, guanosine, adenosine, and ferulic acid) in ORS were isolated and the structures were identified mainly by NMR spectroscopic analysis. In addition, contents of these metabolites in ORS were evaluated by HPLC analysis. Pretreatment with ORS significantly attenuated the hypertonic stress (175mM NaCl)-induced increase in protein levels of AQP2 and apical membrane insertion. ORS also attenuated osmolyte sodium-myo-inositol transporter (SMIT) expression and tonicity-responsive enhancer binding protein (TonEBP) mRNA under hypertonic stress. Those actions of ORS presented the similar effect of PKA inhibitor which AQP2 expression throughout the inhibition of vasopressin-mediated cAMP/PKA signal pathway. On the other hand, pretreatment with ORS attenuated hypertonic stress-induced cell death. Hypertonic stress-induced Bax or caspase-3 expression was decreased by ORS, resulting in anti-apoptotic effect. CONCLUSIONS The present data suggest that the beneficial effect of ORS in water balance and apoptosis against hypertonic stress of renal collecting ducts.
Collapse
Affiliation(s)
- Yun Jung Lee
- Department of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 570-749, Republic of Korea; Hanbang Body-fluid Research Center, Wonkwang University, Iksan 570-749, Republic of Korea.
| | - So Min Lee
- Hanbang Body-fluid Research Center, Wonkwang University, Iksan 570-749, Republic of Korea; KM Fundamental Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-Gu, 34054 Daejeon, Republic of Korea.
| | - Xiang Cui
- Hanbang Body-fluid Research Center, Wonkwang University, Iksan 570-749, Republic of Korea; College of Pharmacy, Wonkwang University, Iksan 570-749, Republic of Korea.
| | - Jung Joo Yoon
- Department of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 570-749, Republic of Korea; Hanbang Body-fluid Research Center, Wonkwang University, Iksan 570-749, Republic of Korea.
| | - Hyun Cheol Oh
- Hanbang Body-fluid Research Center, Wonkwang University, Iksan 570-749, Republic of Korea; College of Pharmacy, Wonkwang University, Iksan 570-749, Republic of Korea.
| | - Youn Chul Kim
- Hanbang Body-fluid Research Center, Wonkwang University, Iksan 570-749, Republic of Korea; College of Pharmacy, Wonkwang University, Iksan 570-749, Republic of Korea.
| | - Min Cheol Park
- Department of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 570-749, Republic of Korea; Department of Oriental Medical Ophthalmology & Otolaryngology & Dermatology, College of Oriental Medicine, Wonkwang University, Shinyong-dong, Iksan, Jeonbuk 570-749, Republic of Korea.
| | - Dae Gill Kang
- Department of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 570-749, Republic of Korea; Hanbang Body-fluid Research Center, Wonkwang University, Iksan 570-749, Republic of Korea.
| | - Ho Sub Lee
- Department of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 570-749, Republic of Korea; Hanbang Body-fluid Research Center, Wonkwang University, Iksan 570-749, Republic of Korea.
| |
Collapse
|