1
|
Caso C, Altmann K. Cyclization by Intramolecular Suzuki-Miyaura Cross-Coupling-A Review. Chemistry 2025; 31:e202402664. [PMID: 39385337 PMCID: PMC11711311 DOI: 10.1002/chem.202402664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/12/2024]
Abstract
Ring systems of all sizes are frequent core or substructures in natural products and they are important elements of many drug molecules, as they often confer high binding affinity to and selectivity for disease-relevant biological targets. A uniform key transformation in the synthesis of such structures is the cyclization step. Among the various approaches that have been developed for ring closure, the intramolecular Suzuki-Miyaura reaction has emerged as a powerful option for the construction of normal- and medium-sized rings as well as macrocycles, due to its stereospecificity, the mild reaction conditions, and the non-toxic nature of the boron by-products. In this review, we summarize the state-of-the-art of the application of intramolecular Suzuki-Miyaura cross-coupling reactions in the construction of (macro)cyclic frameworks of natural products and bioactive molecules of synthetic origin, covering (mostly) examples that have been reported since 2015. Target molecules prepared via intramolecular Suzuki-Miyaura cross-coupling as a key step range from natural products/natural product analogs to synthetic drug candidates, featuring ring sizes from 4 to ≫12. We highlight the utility, scope, and limitations of the reaction for different ring sizes and arrays of functional groups. Where possible, comparisons with other methods of cyclization are provided.
Collapse
Affiliation(s)
- Carolina Caso
- Department of Chemistry and Applied BiosciencesInstitute of Pharmaceutical SciencesETH ZürichHCI H429, Vladimir-Prelog-Weg 1–5/108093ZürichSwitzerland
| | - Karl‐Heinz Altmann
- Department of Chemistry and Applied BiosciencesInstitute of Pharmaceutical SciencesETH ZürichHCI H429, Vladimir-Prelog-Weg 1–5/108093ZürichSwitzerland
| |
Collapse
|
2
|
Min L, Han JC, Zhang W, Gu CC, Zou YP, Li CC. Strategies and Lessons Learned from Total Synthesis of Taxol. Chem Rev 2023; 123:4934-4971. [PMID: 36917457 DOI: 10.1021/acs.chemrev.2c00763] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Taxol (paclitaxel), the most well-known taxane diterpenoid, is the best-selling natural-source anticancer drug ever produced and one of the most common prescriptions in the treatment of breast, lung, and ovarian cancers, saving countless lives around the world. Structurally, Taxol possesses a highly oxygenated [6-8-6-4] core bearing 11 stereocenters, seven of which are contiguous chiral centers. Moreover, the extremely strained bicyclo[5.3.1] undecane ring system with a bridgehead double bond is a unique structural feature. All these features make Taxol a highly challenging synthetic target. Tremendous synthetic efforts from more than 60 research groups around the world have already culminated in ten total syntheses and three formal syntheses, as well as more than 60 synthetic model studies of Taxol. This review is intended to provide a long-overdue appraisal of the great achievements in the total syntheses of Taxol reported in the last few decades. In doing so, we summarize the development of synthesis toward Taxol from 1994 to 2022, including the evolution of synthetic strategy for accessing this complex molecular scaffold and key lessons learned from such endeavors. Finally, we briefly discuss the future of the research in this area.
Collapse
Affiliation(s)
- Long Min
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Jing-Chun Han
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Wen Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Chen-Chen Gu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yun-Peng Zou
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.,Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
3
|
Nakada M. Research on the Efficient Enantioselective Total Synthesis of Useful Bioactive Polycyclic Compounds. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Masahisa Nakada
- Department of Chemistry and Biochemistry, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 119-8555
| |
Collapse
|
4
|
Li Z, Zheng J, Li WDZ. Diverse strategic approaches en route to Taxol total synthesis. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Iiyama S, Fukaya K, Yamaguchi Y, Watanabe A, Yamamoto H, Mochizuki S, Saio R, Noguchi T, Oishi T, Sato T, Chida N. Total Synthesis of Paclitaxel. Org Lett 2022; 24:202-206. [PMID: 34904840 DOI: 10.1021/acs.orglett.1c03851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The total synthesis of paclitaxel (Taxol) is described. Double Rubottom oxidation of the bis(silyl enol ether) derived from a tricarbocyclic diketone effectively installed a bridgehead olefin and C-5/C-13 hydroxy groups in a one-step operation. The novel Ag-promoted oxetane formation smoothly constructed the tetracyclic framework of paclitaxel.
Collapse
Affiliation(s)
- Shota Iiyama
- Department Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Keisuke Fukaya
- Department Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Yu Yamaguchi
- Department Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Ami Watanabe
- Department Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Hiroaki Yamamoto
- Department Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Shota Mochizuki
- Department Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Ryosuke Saio
- Department Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Takashi Noguchi
- Department Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Takeshi Oishi
- School of Medicine, Keio University, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama 223-8521, Japan
| | - Takaaki Sato
- Department Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Noritaka Chida
- Department Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|