1
|
Chai JT, Ruparelia N, Goel A, Kyriakou T, Biasiolli L, Edgar L, Handa A, Farrall M, Watkins H, Choudhury RP. Differential Gene Expression in Macrophages From Human Atherosclerotic Plaques Shows Convergence on Pathways Implicated by Genome-Wide Association Study Risk Variants. Arterioscler Thromb Vasc Biol 2019; 38:2718-2730. [PMID: 30354237 PMCID: PMC6217969 DOI: 10.1161/atvbaha.118.311209] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— Plaque macrophages are intricately involved in atherogenesis and plaque destabilization. We sought to identify functional pathways in human plaque macrophages that are differentially regulated in respect of (1) plaque stability and (2) lipid content. We hypothesized that differentially regulated macrophage gene sets would relate to genome-wide association study variants associated with risk of acute complications of atherosclerosis. Approach and Results— Forty patients underwent carotid magnetic resonance imaging for lipid quantification before endarterectomy. Carotid plaque macrophages were procured by laser capture microdissection from (1) lipid core and (2) cap region, in 12 recently symptomatic and 12 asymptomatic carotid plaques. Applying gene set enrichment analysis, a number of gene sets were found to selectively upregulate in symptomatic plaque macrophages, which corresponded to 7 functional pathways: inflammation, lipid metabolism, hypoxic response, cell proliferation, apoptosis, antigen presentation, and cellular energetics. Predicted upstream regulators included IL-1β, TNF-α, and NF-κB. In vivo lipid quantification by magnetic resonance imaging correlated most strongly with the upregulation of genes of the IFN/STAT1 pathways. Cross-interrogation of gene set enrichment analysis and meta-analysis gene set enrichment of variant associations showed lipid metabolism pathways, driven by genes coding for APOE and ABCA1/G1 coincided with known risk-associated SNPs (single nucleotide polymorphisms) from genome-wide association studies. Conclusions— Macrophages from recently symptomatic carotid plaques show differential regulation of functional gene pathways. There were additional quantitative relationships between plaque lipid content and key gene sets. The data show a plausible mechanism by which known genome-wide association study risk variants for atherosclerotic complications could be linked to (1) a relevant cellular process, in (2) the key cell type of atherosclerosis, in (3) a human disease-relevant setting.
Collapse
Affiliation(s)
- Joshua T Chai
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.T.C., N.R., A.G., T.K., L.B., L.E., M.F., H.W., R.P.C.), University of Oxford, United Kingdom
| | - Neil Ruparelia
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.T.C., N.R., A.G., T.K., L.B., L.E., M.F., H.W., R.P.C.), University of Oxford, United Kingdom
| | - Anuj Goel
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.T.C., N.R., A.G., T.K., L.B., L.E., M.F., H.W., R.P.C.), University of Oxford, United Kingdom
| | - Theodosios Kyriakou
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.T.C., N.R., A.G., T.K., L.B., L.E., M.F., H.W., R.P.C.), University of Oxford, United Kingdom
| | - Luca Biasiolli
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.T.C., N.R., A.G., T.K., L.B., L.E., M.F., H.W., R.P.C.), University of Oxford, United Kingdom
| | - Laurienne Edgar
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.T.C., N.R., A.G., T.K., L.B., L.E., M.F., H.W., R.P.C.), University of Oxford, United Kingdom
| | - Ashok Handa
- Nuffield Department of Surgical Sciences (A.H.), University of Oxford, United Kingdom
| | - Martin Farrall
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.T.C., N.R., A.G., T.K., L.B., L.E., M.F., H.W., R.P.C.), University of Oxford, United Kingdom
| | - Hugh Watkins
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.T.C., N.R., A.G., T.K., L.B., L.E., M.F., H.W., R.P.C.), University of Oxford, United Kingdom
| | - Robin P Choudhury
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.T.C., N.R., A.G., T.K., L.B., L.E., M.F., H.W., R.P.C.), University of Oxford, United Kingdom
| |
Collapse
|
2
|
Comparative Evaluation of Gemcabene and Peroxisome Proliferator-Activated Receptor Ligands in Transcriptional Assays of Peroxisome Proliferator-Activated Receptors: Implication for the Treatment of Hyperlipidemia and Cardiovascular Disease. J Cardiovasc Pharmacol 2019; 72:3-10. [PMID: 29621036 PMCID: PMC6039382 DOI: 10.1097/fjc.0000000000000580] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Gemcabene, a late-stage clinical candidate, has shown efficacy for LDL-C, non-HDL cholesterol, apoB, triglycerides, and hsCRP reduction, all risk factors for cardiovascular disease. In rodents, gemcabene showed changes in targets, including apoC-III, apoA-I, peroxisomal enzymes, considered regulated through peroxisome proliferator-activated receptor (PPAR) gene activation, suggesting a PPAR-mediated mechanism of action for the observed hypolipidemic effects observed in rodents and humans. In the current study, the gemcabene agonist activity against PPAR subtypes of human, rat, and mouse were compared with known lipid lowering PPAR activators. Surprisingly, gemcabene showed no or little PPAR-α transactivation compared with reference agonists, which showed concentration-dependent transactivation against human PPAR-α of 2.4- to 30-fold (fenofibric acid), 17-fold (GW590735), and 2.3- to 25-fold (WY-14643). These agents also showed robust transactivation of mouse and rat PPAR-α in a concentration-dependent manner. The known PPAR-δ agonists, GW1516, L165041, and GW0742, showed potent agonist activity against human, mouse, and rat receptors (ranging from 165- to 396-fold). By contrast, gemcabene at the highest concentration tested (300 μM) showed no response in mouse and rat and a marginal response against human PPAR-δ receptors (3.2-fold). For PPAR-γ, gemcabene showed no agonist activity against all 3 species at 100 μM and marginal activity (3.6- to 5-fold) at 300 μM. By contrast, the known agonists, rosiglitazone, indomethacin, and muraglitazar showed strong activation against the mouse, rat, and human PPAR-γ receptors. No clear antagonist activity was observed with gemcabene against any PPAR subtypes for all 3 species over a wide range of concentrations. In summary, the transactivation studies rule out gemcabene as a direct agonist or antagonist of PPAR-α, PPAR-γ, and PPAR-δ receptors of these 3 species. These data suggest that the peroxisomal effects observed in rodents and the lipid regulating effects observed in rodents and humans are not related to a direct activation of PPAR receptors by gemcabene.
Collapse
|
3
|
Chen MJ, Chou CH, Chen SU, Yang WS, Yang YS, Ho HN. The effect of androgens on ovarian follicle maturation: Dihydrotestosterone suppress FSH-stimulated granulosa cell proliferation by upregulating PPARγ-dependent PTEN expression. Sci Rep 2015; 5:18319. [PMID: 26674985 PMCID: PMC4682139 DOI: 10.1038/srep18319] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/16/2015] [Indexed: 01/01/2023] Open
Abstract
Intraovarian hyperandrogenism is one of the determining factors of follicular arrest in women with polycystic ovary syndrome (PCOS). Using androgenized rat models, we investigated the effects of androgens on metabolism, as well as on factors involved in follicular arrest and the reduced number of estrus cycles. The dihydrotestosterone (DHT)-treated rats had fewer estrus cycles, higher numbers of large arrested follicles and an increased in body weight gain compared with the dehydroepiandrostenedione (DHEA)- and placebo-treated rats. In cultured rat granulosa cells, DHT suppressed follicle stimulating hormone (FSH)-induced granulosa cell proliferation and increased the accumulation of cells in the G2/M phase. DHT decreased phosphorylated Akt (p-Akt) and cyclin D1 levels through increasing PTEN. DHT-promoted PTEN expression was regulated by peroxisome proliferator-activated receptor gamma (PPARγ) in granulosa cells. Meanwhile, in the large follicles of the DHT-treated rats, the expressions of PPARγ and PTEN were higher, but the expression of p-Akt and proliferating cell nuclear antigen (PCNA) were lower. Conclusively, DHT and DHEA produced differential effects on metabolism in prepubertal female rats like clinical manifestations of women with PCOS. DHT treatment may affect ovarian follicular maturation by altering granulosa cell proliferation through the regulation of enhancing PPARγ dependent PTEN/p-Akt expression in the granulosa cells.
Collapse
Affiliation(s)
- Mei-Jou Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Hung Chou
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shee-Uan Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Shiung Yang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Shih Yang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hong-Nerng Ho
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|