1
|
Liu Y, Xue R. Pancreatic stellate cell: Update on molecular investigations and clinical translation in pancreatic cancer. Int J Cancer 2025; 156:1672-1685. [PMID: 39825771 DOI: 10.1002/ijc.35326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/11/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025]
Abstract
Pancreatic cancer is a particularly aggressive tumor, distinguished by the presence of a prominent collagenous stroma and desmoplasia that envelops the tumor cells. Pancreatic stellate cell (PSC) contributes to the formation of a dense fibrotic stroma and has been demonstrated to facilitate tumor progression. As the significance of PSCs is increasingly revealed, more explorations are focused on the complex molecular mechanisms and tumor-stromal crosstalk in order to guide potential therapeutic approaches through deactivating or reprogramming PSCs. Nevertheless, significant challenges persist in translating preclinical discoveries into clinical applications. In this review, we expect to offer a comprehensive overview of the latest molecular advancements in PSCs, along with new insights into the clinical therapeutic strategies targeting PSCs.
Collapse
Affiliation(s)
- Yawei Liu
- School of Basic Medicine Sciences, Capital Medical University, Beijing, China
- Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Ran Xue
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Early Drug Development Center, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
2
|
Gong L, Zhu T, Chen C, Xia N, Yao Y, Ding J, Xu P, Li S, Sun Z, Dong X, Shen W, Sun P, Zeng L, Xie Y, Jiang P. Miconazole exerts disease-modifying effects during epilepsy by suppressing neuroinflammation via NF-κB pathway and iNOS production. Neurobiol Dis 2022; 172:105823. [PMID: 35878745 DOI: 10.1016/j.nbd.2022.105823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/29/2022] [Accepted: 07/16/2022] [Indexed: 11/29/2022] Open
Abstract
Neuroinflammation contributes to the generation of epilepsy and has been proposed as an effective therapeutic target. Recent studies have uncovered the potential effects of the anti-fungal drug miconazole for treating various brain diseases by suppressing neuroinflammation but have not yet been studied in epilepsy. Here, we investigated the effects of different doses of miconazole (5, 20, 80 mg/kg) on seizure threshold, inflammatory cytokines release, and glial cells activation in the pilocarpine (PILO) pentylenetetrazole (PTZ), and intrahippocampal kainic acid (IHKA) models. We demonstrated that 5 and 20 mg/kg miconazole increased seizure threshold, but only 20 mg/kg miconazole reduced inflammatory cytokines release, glial cells activation, and morphological alteration during the early post-induction period (24 h, 3 days). We further investigated the effects of 20 mg/kg miconazole on epilepsy (4 weeks after KA injection). We found that miconazole significantly attenuated cytokines production, glial cells activation, microglial morphological changes, frequency and duration of recurrent hippocampal paroxysmal discharges (HPDs), and neuronal and synaptic damage in the hippocampus during epilepsy. In addition, miconazole suppressed the KA-induced activation of the NF-κB pathway and iNOS production. Our results indicated miconazole to be an effective drug for disease-modifying effects during epilepsy, which may act by attenuating neuroinflammation through the suppression of NF-κB activation and iNOS production. At appropriate doses, miconazole may be a safe and effective approved drug that can easily be repositioned for clinical practice.
Collapse
Affiliation(s)
- Lifen Gong
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Tao Zhu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China
| | - Chen Chen
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Ningxiao Xia
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Yinping Yao
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China; Department of Pediatrics, Shaoxing People's Hospital, Shaoxing 312300, China
| | - Junchao Ding
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China; Department of Pediatrics, Yiwu Maternity and Children Hospital, Yiwu 322000, China
| | - Peng Xu
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China; Department of Pediatrics, Tongxiang First People's Hospital, Tongxiang 314500, China
| | - Shufen Li
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China; Department of Pediatrics, Lishui Center Hospital, Lishui 323000, China
| | - Zengxian Sun
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China; Department of Pediatrics, Lishui Center Hospital, Lishui 323000, China
| | - Xinyan Dong
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Weida Shen
- Department of Pharmacy, Zhejiang University City College School of Medicine, Hangzhou 310015, China
| | - Peng Sun
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Linghui Zeng
- Department of Pharmacy, Zhejiang University City College School of Medicine, Hangzhou 310015, China.
| | - Yicheng Xie
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China.
| | - Peifang Jiang
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China.
| |
Collapse
|
3
|
Pala S, Atilgan R, Kuloglu T, Yalçın E, Kaya N, Etem E. The decrease in hippocampal transient receptor potential M2 (TRPM2) channel and muscarinic acetylcholine receptor 1 (CHRM1) is associated with memory loss in a surgical menopause rat model. Arch Med Sci 2021; 17:228-235. [PMID: 33488875 PMCID: PMC7811316 DOI: 10.5114/aoms.2019.83760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/01/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION The aim of the study was to investigate the association of transient receptor potential M2 (TRPM2) channel and muscarinic acetylcholine receptor 1 (CHRM1) activity with the memorial functions that are deteriorated in surgical menopause. MATERIAL AND METHODS A total of 14 female rats were randomly divided into 2 groups: group (G)1: sham group; group (G)2: surgical menopause group, the group in which bilateral ovariectomy was performed. Fourteen days after the surgical procedure, learning and memorial tests were performed in G1 and G2 for a totally 13 days. The time required for the rats to find the cheese in the labyrinth was recorded and statistical evaluation of it was performed between groups. On the 14th day of the memory test, the rats were decapitated and the brain tissues were fixed in 10% formalin. Hippocampal TRPM2 and CHRM1 gene expression was evaluated with RNA isolation, complementary DNA (cDNA) synthesis and quantitative real-time PCR (qRT-PCR) analysis. TRPM2 and CHRM1 immunoreactivity was evaluated in hippocampal tissue with the immunohistochemical method. Histo-score was calculated regarding the diffuseness of and severity of the staining; and statistical analyses were performed. RESULTS In the ovariectomized group, the mean time required for the rats to find the cheese was statistically significantly elongated (39.29 ±4.0 s vs. 29.86 ±2.6 s). When the hippocampal TRPM2 and CHRM1 gene expression and immunoreactivity were compared with the sham group, there was a statistically significant decrease in the surgical menopause group (p < 0.05). CONCLUSIONS In surgical menopause, in deterioration of memorial functions, hippocampal TRPM2 channel and CHRM1 activity plays an important role.
Collapse
Affiliation(s)
- Sehmus Pala
- Department of Obstetrics and Gynecology, School of Medicine, Firat University, Elazig, Turkey
| | - Remzi Atilgan
- Department of Obstetrics and Gynecology, School of Medicine, Firat University, Elazig, Turkey
| | - Tuncay Kuloglu
- Department of Histology and Embryology, School of Medicine, Firat University, Elazig, Turkey
| | - Emre Yalçın
- Department of Obstetrics and Gynecology, School of Medicine, Firat University, Elazig, Turkey
| | - Nalan Kaya
- Department of Histology and Embryology, School of Medicine, Firat University, Elazig, Turkey
| | - Ebru Etem
- Department of Medical Biology, School of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
4
|
Zheng Y, McTavish J, Smith PF. Pharmacological Evaluation of Drugs in Animal Models of Tinnitus. Curr Top Behav Neurosci 2020; 51:51-82. [PMID: 33590458 DOI: 10.1007/7854_2020_212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite the pressing need for effective drug treatments for tinnitus, currently, there is no single drug that is approved by the FDA for this purpose. Instead, a wide range of unproven over-the-counter tinnitus remedies are available on the market with little or no benefit for tinnitus but with potential harm and adverse effects. Animal models of tinnitus have played a critical role in exploring the pathophysiology of tinnitus, identifying therapeutic targets and evaluating novel and existing drugs for tinnitus treatment. This review summarises and compares the studies on pharmacological evaluation of tinnitus treatment in different animal models based on the pharmacological properties of the drug and provides insights into future directions for tinnitus drug discovery.
Collapse
Affiliation(s)
- Yiwen Zheng
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand. .,Brain Research New Zealand, Auckland, New Zealand. .,Brain Health Research Centre, University of Otago, Dunedin, New Zealand. .,Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand.
| | - Jessica McTavish
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand, Auckland, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
| | - Paul F Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand, Auckland, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|