1
|
Xiao B, Li L, Yao D, Mo B. Noncoding RNAs in asthmatic airway smooth muscle cells. Eur Respir Rev 2023; 32:32/168/220184. [PMID: 37076176 PMCID: PMC10113956 DOI: 10.1183/16000617.0184-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/07/2023] [Indexed: 04/21/2023] Open
Abstract
Asthma is a complex and heterogeneous airway disease caused by genetic, environmental and epigenetic factors treated with hormones and biologics. Irreversible pathological changes to airway smooth muscle cells (ASMCs) such as hyperplasia and hypertrophy can occur in asthmatic patients. Determining the mechanisms responsible is vital for preventing such changes. In recent years, noncoding RNAs (ncRNAs), especially microRNAs, long noncoding RNAs and circular RNAs, have been found to be associated with abnormalities of the ASMCs. This review highlights recent ncRNA research into ASMC pathologies. We present a schematic that illustrates the role of ncRNAs in pathophysiological changes to ASMCs that may be useful in future research in diagnostic and treatment strategies for patients with asthma.
Collapse
Affiliation(s)
- Bo Xiao
- Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, Guilin, China
- Key Laboratory of Respiratory Diseases, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
- These authors contributed equally to this work
| | - Liangxian Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
- These authors contributed equally to this work
| | - Dong Yao
- Key Laboratory of Respiratory Diseases, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- These authors contributed equally to this work
| | - Biwen Mo
- Key Laboratory of Respiratory Diseases, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- Key Laboratory of Glucose and Lipid Metabolism Disorders, Guangxi Health Commission, Guilin, China
| |
Collapse
|
2
|
Meng J, Zou Y, Hou L, He L, Liu Y, Cao M, Wang C, Du J. MiR-140-3p Ameliorates The Inflammatory Response of Airway Smooth Muscle Cells by Targeting HMGB1 to Regulate The JAK2/STAT3 Signaling Pathway. CELL JOURNAL 2022; 24:673-680. [PMID: 36377217 PMCID: PMC9663964 DOI: 10.22074/cellj.2022.8067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Indexed: 01/25/2023]
Abstract
OBJECTIVE The growth and migration of airway smooth muscle cells (ASMCs) are dysregulated in asthma. MicroRNAs (miRNAs) are associated with the pathogenesis of many diseases including asthma. Instead, the function of miR-140- 3pin ASMCs' dysregulation in asthma remains inconclusive. This study aimed to explore the role and mechanism of miR-140-3p in ASMCs' dysregulation. MATERIALS AND METHODS In this experimental study, ASMCs were stimulated with platelet-derived growth factor (PDGF)- BB to construct an asthma cell model in vitro. MiR-140-3p expression level in the plasma of 50 asthmatic patients and 50 healthy volunteers was measured with quantitative real-time polymerase chain reaction (qRT-PCR). Besides, the enzyme-linked immunosorbent assay (ELISA) was applied to detect the contents of interleukin (IL) -1β, IL-6, and tumor necrosis factor-α (TNF-α) in the cell culture supernatant of ASMCs. Additionally, CCK-8 and transwell assays were adopted to probe the multiplication and migration of ASMCs. In addition, the western blot was employed to examine HMGB1, JAK2, and STAT3 protein expressions in ASMCs after miR-140-3p and HMGB1 were selectively regulated. RESULTS miR-140-3p expression was declined in asthmatic patients' plasma and ASMCs stimulated by PDGF-BB. Upregulating miR-140-3p suppressed the viability and migration of the cells and alleviated the inflammatory response while inhibiting miR-140-3p showed opposite effects. Additionally, HMGB1 was testified as the target of miR-140-3p. HMGB1 overexpression could reverse the impact of miR-140-3p upregulation on the inflammatory response of ASMCs stimulated by PDGF-BB. MiR-140-3p could repress the activation of JAK2/STAT3 via suppressing HMGB1. CONCLUSION In ASMCs, miR-140-3p can inhibit the JAK2/STAT3 signaling pathway by targeting HMGB1, thus ameliorating airway inflammation and remodeling in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Jun Meng
- Maternity School, Yuhuangding Hospital, Yantai, Shandong Province, China
| | - Yingxia Zou
- Children’s Health Clinic, Yuhuangding Hospital, Yantai, Shandong Province, China
| | - Li Hou
- Department of Gynecology and Obstetrics, Yuhuangding Hospital, Yantai, Shandong Province, China
| | - Limin He
- Department of Respiratory Medicine, Penglai Second People’s Hospital, Penglai, Shandong Province, China
| | - Yuanjuan Liu
- Department of Respiratory Medicine, Penglai Second People’s Hospital, Penglai, Shandong Province, China,Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong Province, China
| | - Menghan Cao
- Department of Respiratory Medicine, Penglai Second People’s Hospital, Penglai, Shandong Province, China
| | - Chunjie Wang
- Department of Gynecology and Obstetrics, Yuhuangding Hospital, Yantai, Shandong Province, China,Department of Gynecology and ObstetricsYuhuangding HospitalYantaiShandong ProvinceChina
Children’s Health ClinicYuhuangding HospitalYantaiShandong ProvinceChina
Emails:,
| | - Junying Du
- Children’s Health Clinic, Yuhuangding Hospital, Yantai, Shandong Province, China,Department of Gynecology and ObstetricsYuhuangding HospitalYantaiShandong ProvinceChina
Children’s Health ClinicYuhuangding HospitalYantaiShandong ProvinceChina
Emails:,
| |
Collapse
|
3
|
Shan L, Liu S, Zhang Q, Zhou Q, Shang Y. Human bone marrow-mesenchymal stem cell-derived exosomal microRNA-188 reduces bronchial smooth muscle cell proliferation in asthma through suppressing the JARID2/Wnt/β-catenin axis. Cell Cycle 2022; 21:352-367. [PMID: 34974799 PMCID: PMC8855860 DOI: 10.1080/15384101.2021.2020432] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The functions of exosomes in allergic diseases including asthma have aroused increasing concerns. This paper focuses on the effects of exosomes derived from human bone marrow-mesenchymal stem cells (hBM-MSCs) on the proliferation of bronchial smooth muscle cells in asthma and the mechanism involved. Exosomes were extracted from hBM-MSCs and identified. Human BSMCs were induced with transforming growth factor (TGF)-β1 to mimic an asthma-like condition in vitro and then treated with exosomes. A mouse model with asthma was induced by ovalbumin (OVA) and treated with exosomes for in vivo study. The hBM-MSC-derived exosomes significantly reduced the abnormal proliferation and migration of TGF-β1-treated BSMCs. microRNA (miR)-188 was the most enriched miRNA in exosomes according the microarray analysis, and JARID2 was identified as a mRNA target of miR-188. Either downregulation of miR-188 or upregulation of JARID2 blocked the protective effects of exosomes on BSMCs. JARID2 activated the Wnt/β-catenin signaling pathway. In the asthmatic mice, hBM-MSC-derived exosomes reduced inflammatory cell infiltration, mucus production, and collagen deposition in mouse lung tissues. In conclusion, this study suggestes that hBM-MSC-derived exosomes suppress proliferation of BSMCs and lung injury in asthmatic mice through the miR-188/JARID2/Wnt/β-catenin axis. This study may provide novel insights into asthma management.
Collapse
Affiliation(s)
- Lishen Shan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Si Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Qinzhen Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Qianlan Zhou
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Yunxiao Shang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, P.R. China,CONTACT Yunxiao Shang Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Heping District, Shenyang110004, Liaoning, P.R. China
| |
Collapse
|
4
|
Zhang Y, Xia Q, Lin J. Runx1 promotes the development of glioma cells by regulating JAK-STAT signalling pathway. Arch Med Sci 2022; 18:761-776. [PMID: 35591830 PMCID: PMC9102685 DOI: 10.5114/aoms.2019.87268] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/07/2019] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION Human glioma is known as the most frequent and primary malignant tumour of the central nervous system with high aggression and poor prognosis. Runx1 is essential for haematopoiesis and is associated with tumour progression in several types of cancers. Therefore, this study aimed to investigate the effect and the possible regulatory mechanisms of Runx1 in glioma. MATERIAL AND METHODS The expression of Runx1 in human glioma tissues was determined by qRT-PCR and immunohistochemistry (IHC). Subsequently, the effect of Runx1 on the glioma cell viability, migration, invasion and the protein level of p21, cyclin D1, MMP2, and MMP4 were detected by MTT, wound healing, transwell assays, and western blot, respectively, in U-138MG and U-251MG cell lines. We then explored the role of Runx1 in vivo by establishing a tumour-bearing mouse model. RESULTS The expression of Runx1 was significantly up-regulated in human glioma tissues and closely associated with tumour grade. Glioma patients with high Runx1 expression had decreased survival rate compared to those with low Runx1 level. Runx1 knockdown inhibited glioma cell viability, migration, invasion, and clone formation, while STAT3 suppressed these inhibitions. Moreover, Runx1 inhibited the activation of SOCS3/SOCS4 promoter, which in turn activated JAK/STAT3 signalling pathway. The tumour volume and weight of the siRunx1 group were lower than in the control group and the tumour mass grow more slowly as well. CONCLUSIONS Runx1 promotes the development of glioma cells via JAK/STAT signalling pathway by inhibiting the activation of SOCS3/SOCS4 promoter.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Neurosurgery, Guizhou People's Hospital, Nanming District, Guiyang, Guizhou Province, China
| | - Qiming Xia
- Department of Neurosurgery, Guizhou People's Hospital, Nanming District, Guiyang, Guizhou Province, China
| | - Jun Lin
- Department of Neurosurgery, Guizhou People's Hospital, Nanming District, Guiyang, Guizhou Province, China
| |
Collapse
|
5
|
Yang C, Deng S. Hsa_circ_0017728 as an oncogene in gastric cancer by sponging miR-149 and modulating the IL-6/STAT3 pathway. Arch Med Sci 2022; 18:1558-1571. [PMID: 36457988 PMCID: PMC9710264 DOI: 10.5114/aoms.2019.87274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 06/03/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Circular RNAs (circRNAs) have been identified as competing endogenous RNAs (ceRNAs) to mediate gene expression participating in the progression of multiple cancers, including gastric carcinoma (GC). However, the underlying molecular mechanisms by which circRNAs-modulated cell proliferation and apoptosis in GC had not been completely clarified. In our study, hsa_circ_0017728 as a potential oncogene competing endogenous RNA (ceRNA) was investigated in the progression and development of gastric carcinogenesis. MATERIAL AND METHODS High-throughput sequencing was used to determine differentially expressed circRNAs in GC tissues and corresponding non-cancerous tissues. The CCK-8 assay and Annexin V-fluorescein isothiocyanate/polyimide (Annexin V-FITC/PI) staining were performed to detect the cell viability and apoptosis in GC cells. In addition, gene expression and protein levels in GC tissues and cell lines were measured using RT-qPCR and western blotting, respectively. RESULTS Our results demonstrated that the hsa_circ_0017728 expression level was up-regulated in GC tissues and cell lines and closely associated with poor overall survival and pathological differentiation, higher TNM stage and lymph node metastasis. Knockdown of hsa_circ_0017728 had the ability to cause inhibition of cell proliferation and migration and elevate the cell apoptosis rate in GC cells. We also discovered that hsa_circ_0017728 might serve as a ceRNA to sponge miR-149 and indirectly regulated the IL-6/STAT3 signaling pathway in GC cell proliferation and apoptosis. CONCLUSIONS The regulatory network of hsa_circ_0017728/miR-149/IL-6/STAT3 cascade signaling might provide a better understanding of gastric carcinogenesis and progression.
Collapse
Affiliation(s)
- Chun Yang
- School of Medicine, University of Electronic Science and Technology of China; Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Shaoping Deng
- School of Medicine, University of Electronic Science and Technology of China; Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Shen Y, Yang G, Zhuo S, Zhuang H, Chen S. lncRNA FTX promotes asthma progression by sponging miR-590-5p and upregulating JAK2. Am J Transl Res 2021; 13:8833-8846. [PMID: 34539998 PMCID: PMC8430149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The increased proliferation and migration of airway smooth muscle cells (ASMCs) are essential factors in the development of asthma. Long noncoding RNAs (lncRNAs) play key roles in the pathogenesis of various diseases, including asthma. A growing body of evidence indicates that lncRNA FTX regulates proliferation and migration in multiple cell types and the progression of various diseases. However, the role of FTX in asthma is still not yet fully understood. Therefore, we explored the role of FTX in the proliferation and migration of ASMCs stimulated by platelet-derived growth factor BB (PDGF-BB) in vitro, as well as the underlying molecular mechanisms. Here, it is demonstrated that the expression of FTX in ASMCs treated with PDGF-BB is significantly up-regulated, and FTX knockout effectively represses the proliferation and migration and promotes the apoptosis of ASMCs induced by PDGF-BB. Mechanistically, FTX can inhibit the proliferation and migration of ASMCs caused by PDGF-BB by targeting miR-590-5p, and FTX over-expression reverses the inhibitory effect. Furthermore, JAK2 is a direct target of the FTX/miR-590-5p signal axis, the over-expression of which reverses the inhibitory effect on the proliferation and migration and the apoptosis-inducing effect of miR-590-5p in ASMCs. Collectively, these results highlight the crucial regulatory role of the FTX/miR-590-5p/JAK2 axis in ASMC proliferation, migration, and apoptosis.
Collapse
Affiliation(s)
- Yan Shen
- Respiratory Department, Longgang Central HospitalShenzhen, China
| | - Gui Yang
- Otolaryngological Department, Longgang Central HospitalShenzhen, China
| | - Songming Zhuo
- Respiratory Department, Longgang Central HospitalShenzhen, China
| | - Hong Zhuang
- Respiratory Department, Longgang Central HospitalShenzhen, China
| | - Sida Chen
- Respiratory Department, Longgang Central HospitalShenzhen, China
| |
Collapse
|
7
|
Wang WL, Luo XM, Zhang Q, Zhu HQ, Chen GQ, Zhou Q. The lncRNA PVT1/miR-590-5p/FSTL1 axis modulates the proliferation and migration of airway smooth muscle cells in asthma. Autoimmunity 2021; 54:138-147. [PMID: 33825599 DOI: 10.1080/08916934.2021.1897977] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Asthma is a prevalent chronic inflammatory airway disease that is characterised by airway remodelling and airway hyperresponsiveness. Abnormal proliferation and migration of airway smooth muscle cells (ASMCs) contribute to airway remodelling in asthma. However, the molecular mechanism underlying an increased ASMC mass in asthma remains elusive. Herein, we aimed at investigating the regulation of lncRNA PVT1 on ASMCs and focussing on the mechanism in the proliferation and migration. METHODS Expression levels of lncRNA PVT1 and miR-590-5p in the serum collected from 24 children with asthma and 10 control children were determined by qRT-PCR. ASMCs proliferation and migration prior to and post platelet-derived growth factor subunit B (PDGF-BB) stimulation were examined by CCK-8 test and transwell assay. Dual-luciferase reporter assay was performed to determine miR-590-5p interaction with lncRNA PVT1 and follistatin-like 1 (FSTL1). Expression of lncRNA PVT1, miR-590-5p, FSTL1, C-Myc, cyclin D1, and cyclin-dependent kinase 1 (CDK1) was tested by quantitative real-time PCR (qRT-PCR) and immunoblotting analysis. RESULTS The expression level of lncRNA PVT1 was higher but the expression level of miR-590-5p was lower in the serum of children with asthma than in control children. The expression level of lncRNA PVT1 was negatively correlated with the expression level of miR-590-5p in asthma. LncRNA PVT1 was upregulated upon PDGF-BB stimulation. LncRNA PVT1 knockdown by its specific shRNA repressed PDGF-BB-induced promotion of proliferation and migration in ASMCs and triggered an elevated miR-590-5p along with declined C-Myc, cyclin D1, and CDK1. The effects of lncRNA PVT1 knockdown on PDGF-BB-induced ASMCs were lost upon miR-590-5p inhibition. MiR-590-5p targeted FSTL1 gene and declined its expression, thus suppressing ASMC proliferation and migration following PDGF-BB stimulation and downregulating C-Myc, cyclin D1, and CDK1 expressions. The effects of miR-590-5p on PDGF-BB-induced ASMCs were lost upon FSTL1 overexpression. CONCLUSION These results support the notion that the lncRNA PVT1/miR-590-5p/FSTL1 axis modulates ASMCs proliferation and migration following PDGF-BB stimulation, providing a potential therapeutic target to attenuate airway remodelling in asthma.
Collapse
Affiliation(s)
- Wen-Lan Wang
- Department of Pediatrics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, P.R. China
| | - Xiao-Ming Luo
- Department of Pediatrics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, P.R. China
| | - Qin Zhang
- Department of Pediatrics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, P.R. China
| | - Hai-Qiao Zhu
- Department of Pediatrics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, P.R. China
| | - Guo-Qing Chen
- Department of Pediatrics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, P.R. China
| | - Qin Zhou
- Department of Pediatrics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, P.R. China
| |
Collapse
|
8
|
Eosinophil microRNAs Play a Regulatory Role in Allergic Diseases Included in the Atopic March. Int J Mol Sci 2020; 21:ijms21239011. [PMID: 33260893 PMCID: PMC7730597 DOI: 10.3390/ijms21239011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
(1) Background: The atopic march is defined by the increased prevalence of allergic diseases after atopic dermatitis onset. In fact, atopic dermatitis is believed to play an important role in allergen sensitization via the damaged skin barrier, leading to allergic diseases such as allergic asthma and allergic rhinitis. The eosinophil, a pro-inflammatory cell that contributes to epithelial damage, is one of the various cells recruited in the inflammatory reactions characterizing these diseases. Few studies were conducted on the transcriptome of this cell type and even less on their specific microRNA (miRNA) profile, which could modulate pathogenesis of allergic diseases and clinical manifestations post-transcriptionally. Actually, their implication in allergic diseases is not fully understood, but they are believed to play a role in inflammation-related patterns and epithelial cell proliferation. (2) Methods: Next-generation sequencing was performed on RNA samples from eosinophils of individuals with atopic dermatitis, atopy, allergic rhinitis and asthma to obtain differential counts of primary miRNA (pri-miRNA); these were also analyzed for asthma-related phenotypes such as forced expiratory volume in one second (FEV1), immunoglobulin E (IgE) and provocative concentration of methacholine inducing a 20% fall in forced expiratory volume in 1 s (PC20) levels, as well as FEV1 to forced vital capacity (FEV1/FVC) ratio. (3) Results: Eighteen miRNAs from eosinophils were identified to be significantly different between affected individuals and unaffected ones. Based on counts from these miRNAs, individuals were then clustered into groups using Ward's method on Euclidian distances. Groups were found to be explained by asthma diagnosis, familial history of respiratory diseases and allergic rhinitis as well as neutrophil counts. (4) Conclusions: The 18 differential miRNA counts for the studying phenotypes allow a better understanding of the epigenetic mechanisms underlying the development of the allergic diseases included in the atopic march.
Collapse
|
9
|
Yang F, Sun Y, Bai Y, Li S, Huang L, Li X. Asthma Promotes Choroidal Neovascularization via the Transforming Growth Factor beta1/Smad Signaling Pathway in a Mouse Model. Ophthalmic Res 2020; 65:14-29. [PMID: 32781454 DOI: 10.1159/000510778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/09/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The association between age-related macular degeneration (AMD) and asthma is controversial. Transforming growth factor beta (TGF-β), which plays a critical role in asthma, has been extensively studied with regard to its function in choroidal neovascularization (CNV). In the present study, we aimed to investigate the role of TGF-β and the possible mechanism of CNV formation complicated with asthma and to explore the effect of a TGF-β inhibitor on CNV development in asthma mouse models. METHODS Laser-induced CNV and ovalbumin-induced asthma mouse models were divided into five groups: control group, acute asthma group, chronic asthma group, inhibitor-treated acute asthma group, and inhibitor-treated chronic asthma group. The gene expression patterns of angiogenic cytokines, vascular endothelial growth factor (VEGF) receptors and inflammasomes in the control group, acute asthma group and chronic asthma group were detected using a QuantiGene Plex 6.0 Reagent System. Fundus fluorescein angiography (FFA) and histology of CNV lesions stained with haematoxylin-eosin (HE) were performed to evaluate CNV formation. Quantitative real-time PCR and western blotting were used to assess TGF-β1, TGF-β2, and VEGF expression and Smad2/3, AKT, p38 MAPK, and ERK1/2 signal transduction and phosphorylation in retinal and choroidal tissue from each group. RESULTS In this study, we verified that laser treatment led to more CNV and vascular leakage in asthmatic mice than that in control mice. The changes were particularly notable in the chronic asthma group. The respective TGF-β1, VEGF, and phosphorylated Smad2/3 (p-Smad2/3) mRNA and protein levels in retinal and choroidal tissue were significantly upregulated in both the acute and chronic asthma groups. After injection of a TGF-β inhibitor, a distinct decline in VEGF, TGF-β1, and p-Smad2/3 protein and mRNA levels was observed, and the mean CNV area also decreased. CONCLUSION We provide new evidence that asthma could be a risk factor for CNV development via the TGF-β1/Smad signalling pathway. A TGF-β inhibitor can be applied as a useful, adjunctive therapeutic strategy for preventing CNV formation in asthmatic patients.
Collapse
Affiliation(s)
- Fei Yang
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Department of Ophthalmology, Peking University International Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing, China
| | - Yaoyao Sun
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing, China
| | - Yujing Bai
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing, China
| | - Shanshan Li
- Department of Ophthalmology, Qilu Hospital Affiliated Shandong University, Jinan, China
| | - Lvzhen Huang
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing, China
| | - Xiaoxin Li
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing, China
- Eye Institute of Xiamen University & Xiamen Eye Centre of Xiamen University, Xiamen, China
| |
Collapse
|
10
|
Danbaran GR, Aslani S, Sharafkandi N, Hemmatzadeh M, Hosseinzadeh R, Azizi G, Jadidi-Niaragh F, Babaie F, Mohammadi H. How microRNAs affect the PD-L1 and its synthetic pathway in cancer. Int Immunopharmacol 2020; 84:106594. [PMID: 32416456 DOI: 10.1016/j.intimp.2020.106594] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022]
Abstract
Programmed cell death-ligand 1 (PD-L1) is a glycoprotein that is expressed on the cell surface of both hematopoietic and nonhematopoietic cells. PD-L1 play a role in the immune tolerance and protect self-tissues from immune system attack. Dysfunction of this molecule has been highlighted in the pathogenesis of tumors, autoimmunity, and infectious disorders. MicroRNAs (miRNAs) are endogenous molecules that are classified as small non-coding RNA with approximately 20-22 nucleotides (nt) length. The function of miRNAs is based on complementary interactions with target mRNA via matching completely or incompletely. The result of this function is decay of the target mRNA or preventing mRNA translation. In the past decades, several miRNAs have been discovered which play an important role in the regulation of PD-L1 in various malignancies. In this review, we discuss the effect of miRNAs on PD-L1 expression and consider the effect of miRNAs on the synthetic pathway of PD-L1, especially during cancers.
Collapse
Affiliation(s)
| | - Saeed Aslani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nadia Sharafkandi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Hosseinzadeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Babaie
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
11
|
Yang Z, Qu Z, Yi M, Lv Z, Wang Y, Shan Y, Ran N, Liu X. MiR-204-5p Inhibits Transforming Growth Factor-β1-Induced Proliferation and Extracellular Matrix Production of Airway Smooth Muscle Cells by Regulating Six1 in Asthma. Int Arch Allergy Immunol 2020; 181:239-248. [PMID: 31955160 DOI: 10.1159/000505064] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/27/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Transforming growth factor-β1 (TGF-β1)-in-duced proliferation of airway smooth muscle cells plays critical roles in the development of airway remodeling. Six1 (sine oculis homeobox homolog 1) has been demonstrated to be involved in airway inflammation and remodeling in asthmatic mice. OBJECTIVES The aim of this work was to investigate the potential role of miR-204-5p in the proliferation and extracellular matrix (ECM) production of airway smooth muscle cells in asthma. METHODS Real-time PCR was used to measure the expression of miR-204-5p in asthmatic airway smooth muscle cells. Cell viability and apoptosis were detected to evaluate the effect of miR-204-5p on airway smooth muscle cells. Dual-luciferase reporter experiments were applied to identify the target genes of miR-204-5p. RESULTS MiR-204-5p was downregulated notably in asthmatic airway smooth muscle cells as well as cells stimulated with TGF-β1. Overexpression of miR-204-5p markedly suppressed the TGF-β1-induced proliferation of airway smooth muscle cells and the deposition of ECM, whereas the inhibition of miR-204-5p significantly enhanced the proliferation of airway smooth muscle cells and upregulated the level of fibronectin and collagen III. Furthermore, subsequent analyses demonstrated that Six1 was a direct target of miR-204-5p, and Western blot further indicated that miR-204-5p negatively regulated the expression of Six1. Most importantly, the restoration of Six1 expression reversed the inhibitory effect of miR-204-5p on TGF-β1-induced proliferation and ECM production. CONCLUSIONS MiR-204-5p inhibits TGF-β1-in-duced proliferation and ECM production of airway smooth muscle cells by regulating Six1, identifying a potential therapeutic target for preventing airway remodeling in asthma.
Collapse
Affiliation(s)
- Zhaochuan Yang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China.,Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhenghai Qu
- Center of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mingji Yi
- Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhidong Lv
- Breast Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanxia Wang
- Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanchun Shan
- Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ni Ran
- Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xinjie Liu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China,
| |
Collapse
|
12
|
Zang J, Yang B, Feng S, Jiang X. Low expression of microRNA-125b enhances the expression of STAT3 and contributes to cholesteatoma growth. Arch Med Sci 2019; 18:1596-1606. [PMID: 36457981 PMCID: PMC9710263 DOI: 10.5114/aoms.2019.89704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 06/21/2019] [Indexed: 11/17/2022] Open
Abstract
Introduction MicroRNA-125b has been found to be down-regulated in many types of malignant tumours and diseases with excessive proliferation of keratinocytes, such as cutaneous squamous cell carcinoma and psoriasis. Cholesteatoma, which is mainly composed of keratinocytes, also has characteristics of abnormal proliferation similar to a malignant tumour. However, the expression and regulatory mechanisms of miR-125b and its downstream genes in cholesteatoma have not been clarified. Material and methods Real time fluorescence quantitative PCR was applied to detect the expression of miR-125b in the cholesteatoma and corresponding retroauricular skin. Immunohistochemical staining and western blot were used to detect signal transducers and activators of transcription 3 (STAT3) and the downstream gene cyclin D1, survivin, and vascular endothelial growth factor (VEGF) in the cholesteatoma and corresponding retroauricular skin. The targeted regulatory relationship between miR-125b and STAT3 was confirmed by dual luciferase reporter assay. Proliferation and apoptosis of transfected HaCaT cells were detected by MTS, cell cycle, and apoptosis assays. Results We observed down-regulation of miR-125b and up-regulation of STAT3, cyclin D1, survivin, and VEGF in cholesteatoma tissues. STAT3 was a direct target gene of miR-125b. Inhibition of miR-125b enhanced STAT3 and its downstream genes expression, promoted HaCaT cell proliferation, and inhibited apoptosis. Conclusions The results of this study demonstrate that miR-125b can influence the growth of cholesteatoma by targeting STAT3 and its downstream genes, including cyclin D1, survivin, and VEGF, thus providing an opportunity to establish new medical therapy strategies and facilitating further study of the pathogenesis of cholesteatoma.
Collapse
Affiliation(s)
- Jian Zang
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Bo Yang
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuai Feng
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuejun Jiang
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Lin J, Feng X, Zhang J, Tong Z. Long noncoding RNA TUG1 promotes airway smooth muscle cells proliferation and migration via sponging miR-590-5p/FGF1 in asthma. Am J Transl Res 2019; 11:3159-3166. [PMID: 31217885 PMCID: PMC6556671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
The proliferation and migration of airway smooth muscle cells (ASMCs) plays an important role in asthma. Recently, the function of long noncoding RNA (lncRNA) in the ASMCs has been realized. This study tries to investigate the role of lncRNA TUG1 for the ASMCs and focus on the deepgoing mechanism in the proliferation and migration. In the asthma rat model, TUG1 expression level was increased comparing with control. In the cellular assay with gain and loss of functions, lncRNA TUG1 promoted the ASMCs proliferation and migration, and reduces apoptosis. In the mechanical investigation, results unveiled that miR-590-5p acted as the target of TUG1, while FGF1 was targeted by miR-590-5p. Overall, this study reveals the vital regulation of TUG1/miR-590-5p/FGF1 axis for the proliferation and migration of ASMCs.
Collapse
Affiliation(s)
- Junling Lin
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital Affiliated to Capital Medical University Beijing 100020, China
| | - Xiaokai Feng
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital Affiliated to Capital Medical University Beijing 100020, China
| | - Jun Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital Affiliated to Capital Medical University Beijing 100020, China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital Affiliated to Capital Medical University Beijing 100020, China
| |
Collapse
|
14
|
Chen Y, Qiao L, Zhang Z, Hu G, Zhang J, Li H. Let-7a inhibits proliferation and promotes apoptosis of human asthmatic airway smooth muscle cells. Exp Ther Med 2019; 17:3327-3334. [PMID: 30988708 PMCID: PMC6447815 DOI: 10.3892/etm.2019.7363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 12/13/2018] [Indexed: 12/18/2022] Open
Abstract
The present study aimed to examine the changes of let-7a expression in asthmatic airway smooth muscle cells (ASMCs) and to analyze its effect on the proliferation and apoptosis of ASMCs, as well as the potential mechanism of action. Let-7a expression levels in ASMCs from asthmatic and non-asthmatic subjects were detected using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. Furthermore, let-7a mimics were transfected in vitro into ASMCs isolated from asthmatic patients, and the effect of let-7a on ASMC proliferation was examined using a Cell Counting Kit-8. In addition, the influence of let-7a on ASMC apoptosis was detected using flow cytometry and a caspase-3/7 activity assay. Target genes of let-7a were predicted using bioinformatics software, and the direct regulatory effect of let-7a on the potential target gene signal transducer and activator of transcription 3 (STAT3) was verified through a dual-luciferase reporter gene assay combined with RT-qPCR and western blot analysis. The results demonstrated that let-7a expression was significantly lower in ASMCs of asthmatic subjects compared with that in ASMCs of normal subjects. Furthermore, upregulation of let-7a expression in asthmatic ASMCs markedly inhibited cell proliferation and promoted cell apoptosis. The results of the dual-luciferase reporter gene assay indicated that let-7a selectively binds with the 3′-untranslated region of the STAT3 mRNA. In addition, let-7a mimics evidently reduced the mRNA and protein expression levels of STAT3 in asthmatic ASMCs. In conclusion, the present study demonstrates that let-7a expression is downregulated in ASMCs from asthmatic patients. Furthermore, let-7a suppresses the proliferation and promotes apoptosis of human asthmatic ASMCs, which may, at least partially, be associated with the downregulation of STAT3 expression.
Collapse
Affiliation(s)
- Yan Chen
- Department of Critical Care Medicine, Shengli Oilfield Center Hospital, Dongying, Shandong 257000, P.R. China
| | - Lujun Qiao
- Department of Critical Care Medicine, Shengli Oilfield Center Hospital, Dongying, Shandong 257000, P.R. China
| | - Zewen Zhang
- Department of Respiratory Disease, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Guoxin Hu
- Department of Critical Care Medicine, Shengli Oilfield Center Hospital, Dongying, Shandong 257000, P.R. China
| | - Jian Zhang
- Department of Critical Care Medicine, Shengli Oilfield Center Hospital, Dongying, Shandong 257000, P.R. China
| | - Hongjia Li
- Department of Respiratory Disease, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|