1
|
Wang J, Li S, Zhang H, Zhang X. A review of Lycium barbarum polysaccharides: Extraction, purification, structural-property relationships, and bioactive molecular mechanisms. Carbohydr Res 2024; 544:109230. [PMID: 39137472 DOI: 10.1016/j.carres.2024.109230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Lycium barbarum L. is of great significance medicinal and edible plant, which is native to N. & Central China. The extensive health benefits of L. barbarum have earned it great respect in traditional medicine for centuries. Lycium barbarum polysaccharides (LBPs) being recognized as one of the most crucial bioactive compounds found within this plant, with it exhibit a diverse range of pharmacological activities and nutritional functions, thereby generating substantial market demand and broad application prospects. To gain a more comprehensive understanding of LBPs, the review discussed the extraction, purification and structural-property relationships of these compounds. In addition, this review provides a comprehensive summary of the potential mechanisms underlying various biological activities attributed to LBPs, including immune modulation, antioxidant effects, neuroprotection, hepatoprotection, and antitumor properties. The application status and the future research directions of LBPs were subsequently presented. This review will establish a robust foundation and serve as an invaluable resource for future research and advancements in the field of LBPs.
Collapse
Affiliation(s)
- Jiao Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Shifeng Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Hua Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Xin Zhang
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| |
Collapse
|
2
|
Fan F, Yang C, Piao E, Shi J, Zhang J. Mechanisms of chondrocyte regulated cell death in osteoarthritis: Focus on ROS-triggered ferroptosis, parthanatos, and oxeiptosis. Biochem Biophys Res Commun 2024; 705:149733. [PMID: 38442446 DOI: 10.1016/j.bbrc.2024.149733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
Osteoarthritis (OA) is a common chronic inflammatory degenerative disease. Since chondrocytes are the only type of cells in cartilage, their survival is critical for maintaining cartilage morphology. This review offers a comprehensive analysis of how reactive oxygen species (ROS), including superoxide anions, hydrogen peroxide, hydroxyl radicals, nitric oxide, and their derivatives, affect cartilage homeostasis and trigger several novel modes of regulated cell death, including ferroptosis, parthanatos, and oxeiptosis, which may play roles in chondrocyte death and OA development. Moreover, we discuss potential therapeutic strategies to alleviate OA by scavenging ROS and provide new insight into the research and treatment of the role of regulated cell death in OA.
Collapse
Affiliation(s)
- Fangyang Fan
- Orthopedics Department, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Cheng Yang
- Orthopedics Department, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Enran Piao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Jia Shi
- Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China.
| | - Juntao Zhang
- Orthopedics Department, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
3
|
Sharifi‐Rad J, Quetglas‐Llabrés MM, Sureda A, Mardones L, Villagran M, Sönmez Gürer E, Živković J, Ezzat SM, Zayed A, Gümüşok S, Sibel Kılıç C, Fasipe B, Laher I, Martorell M. Supercharging metabolic health with Lycium barbarum L.: A review of the therapeutic potential of this functional food for managing metabolic syndrome. FOOD FRONTIERS 2024; 5:420-434. [DOI: 10.1002/fft2.327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
AbstractMetabolic syndrome (MetS) is a common disorder involving a cluster of metabolic abnormalities, such as abdominal obesity, hypertension, dyslipidemia, insulin resistance, and atherogenic profile. MetS is characterized by an increase in oxidative stress and a chronic proinflammatory state, which are directly related to the development and progression of this pathology. It has been seen how a healthy lifestyle and good dietary practices are key to improving the different metabolic parameters and, therefore, play a fundamental role in reducing the risk of developing diabetes. The present review focuses on the research evidence related to the therapeutic properties of Lycium barbarum L. in MetS gathered in the last years. Several preclinical studies suggest that L. barbarum extracts are a good dietary supplement for the prevention of cardiovascular diseases in people with MetS. This compound has been used for years in traditional Chinese medicine for the treatment of atrophic gastritis, problems related to the lungs, kidneys, and liver, and as a supplement for eye health. In addition, different in vitro and in vivo studies have been carried out that support the properties attributed to metabolites derived from L. barbarum, such as polysaccharides that have been shown diverse biological activities. In conclusion, L. barbarum extracts have multiple benefits to increase general well‐being and immune function. However, there are a limited number of studies related to effect of L. barbarum in MetS, but they demonstrated effectiveness in the treatment of obesity, diabetes mellitus type 2, and prevention of diabetes mellitus type 2 complication.
Collapse
Affiliation(s)
| | - Maria Magdalena Quetglas‐Llabrés
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of Balearic Islands (IdISBa) University of the Balearic Islands‐IUNICS Palma de Mallorca, Mallorca Spain
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of Balearic Islands (IdISBa) University of the Balearic Islands‐IUNICS Palma de Mallorca, Mallorca Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition) Instituto de Salud Carlos III Madrid Spain
| | - Lorena Mardones
- Department of Basic Science, Faculty of Medicine Universidad Católica de la Santísima Concepcion Concepción Chile
| | - Marcelo Villagran
- Department of Basic Science, Faculty of Medicine Universidad Católica de la Santísima Concepcion Concepción Chile
- Scientific‐Technological Center for the Sustainable Development of the Coastline Universidad Católica de la Santísima Concepción Concepción Chile
| | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of Pharmacognosy Sivas Cumhuriyet University Sivas Turkey
| | - Jelena Živković
- Institute for Medicinal Plant Research “Dr Josif Pančić”, Tadeuša Košćuška 1 Belgrade Serbia
| | - Shahira M. Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy Cairo University Cairo Egypt
- Department of Pharmacognosy, Faculty of Pharmacy October University for Modern Science and Arts (MSA) 6th of October Egypt
| | - Ahmed Zayed
- Department of Pharmacognosy Tanta University, College of Pharmacy Tanta Egypt
| | - Safa Gümüşok
- Department of Pharmaceutical Botany Ankara University Faculty of Pharmacy Ankara Turkey
| | - Ceyda Sibel Kılıç
- Department of Pharmaceutical Botany Ankara University Faculty of Pharmacy Ankara Turkey
| | - Babatunde Fasipe
- Faculty of Basic Medical Sciences, Department of Pharmacology and Therapeutics Bowen University Iwo Nigeria
| | - Ismail Laher
- Faculty of Medicine, Department of Anesthesiology, Pharmacology and Therapeutics The University of British Columbia Vancouver British Columbia Canada
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy and Centre for Healthy Living University of Concepción Concepción Chile
| |
Collapse
|
4
|
Kuang S, Liu L, Hu Z, Luo M, Fu X, Lin C, He Q. A review focusing on the benefits of plant-derived polysaccharides for osteoarthritis. Int J Biol Macromol 2023; 228:582-593. [PMID: 36563826 DOI: 10.1016/j.ijbiomac.2022.12.153] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Osteoarthritis (OA) is a chronic joint disease characterized by progressive cartilage degeneration, which imposes a heavy physical and financial burden on the middle-aged and elderly population. As the pathogenesis of OA has not been fully elucidated, it is of great importance to develop targeted therapeutic or preventive medications. Traditional therapeutic drugs, such as non-steroidal anti-inflammatory drugs, steroids and opioids, have significant side effects, making the exploration for safe and effective alternative therapeutic drugs urgent. In recent years, many studies have reported the role of plant-derived polysaccharides in anti-inflammation, anti-oxidation, regulation of chondrocyte metabolism and proliferation, and cartilage protection, and have demonstrated their great potential in the treatment of OA. Therefore, by focusing on studies related to the intervention of plant-derived polysaccharides in OA, including in vivo and in vitro experiments, this review aimed to classify and summarize the existing research findings according to different mechanisms of action. In addition, reports on plant-derived polysaccharides as nanoparticles were also explored. Then, candidate monomers and theoretical bases were provided for the further development and application of novel drugs in the treatment of OA.
Collapse
Affiliation(s)
- Shida Kuang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Lumei Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Zongren Hu
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Min Luo
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Department of Rehabilitation Medicine and Health Care, Hunan University of Medicine, Huaihua 418000, Hunan, China; Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Xinying Fu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Chengxiong Lin
- Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Qinghu He
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Medicine, Huaihua, Hunan 418000, China.
| |
Collapse
|
5
|
Luo JH, Li J, Shen ZC, Lin XF, Chen AQ, Wang YF, Gong ES, Liu D, Zou Q, Wang XY. Advances in health-promoting effects of natural polysaccharides: Regulation on Nrf2 antioxidant pathway. Front Nutr 2023; 10:1102146. [PMID: 36875839 PMCID: PMC9978827 DOI: 10.3389/fnut.2023.1102146] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Natural polysaccharides (NPs) possess numerous health-promoting effects, such as liver protection, kidney protection, lung protection, neuroprotection, cardioprotection, gastrointestinal protection, anti-oxidation, anti-diabetic, and anti-aging. Nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway is an important endogenous antioxidant pathway, which plays crucial roles in maintaining human health as its protection against oxidative stress. Accumulating evidence suggested that Nrf2 antioxidant pathway might be one of key regulatory targets for the health-promoting effects of NPs. However, the information concerning regulation of NPs on Nrf2 antioxidant pathway is scattered, and NPs show different regulatory behaviors in their different health-promoting processes. Therefore, in this article, structural features of NPs having regulation on Nrf2 antioxidant pathway are overviewed. Moreover, regulatory effects of NPs on this pathway for health-promoting effects are summarized. Furthermore, structure-activity relationship of NPs for health-promoting effects by regulating the pathway is preliminarily discussed. Otherwise, the prospects on future work for regulation of NPs on this pathway are proposed. This review is beneficial to well-understanding of underlying mechanisms for health-promoting effects of NPs from the view angle of Nrf2 antioxidant pathway, and provides a theoretical basis for the development and utilization of NPs in promoting human health.
Collapse
Affiliation(s)
- Jiang-Hong Luo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jing Li
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Zi-Chun Shen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Xiao-Fan Lin
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Ao-Qiu Chen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yi-Fei Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Er-Sheng Gong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Dan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Qi Zou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Xiao-Yin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Chen N, Zhang H, Zong X, Li S, Wang J, Wang Y, Jin M. Polysaccharides from Auricularia auricula: Preparation, structural features and biological activities. Carbohydr Polym 2020; 247:116750. [DOI: 10.1016/j.carbpol.2020.116750] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/27/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
|