1
|
Yi L, Kong W, Jiu Z, Huang Z, Na P, Chen W, Yin X. Screening of potential key pathogenic and intervention targets of low-grade glioma based on bioinformatics. Transl Cancer Res 2024; 13:5563-5573. [PMID: 39525013 PMCID: PMC11543039 DOI: 10.21037/tcr-24-1662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Background Sialic acid-binding immunoglobulin-like lectin 8 (SIGLEC8) is involved in the progression of numerous diseases. This study aimed to examine the relationship between SIGLEC8 and the prognosis of patients with low-grade glioma (LGG) and the related mechanisms. Methods First, screening of the differentially expressed genes (DEGs) SIGLEC8 in The Cancer Genome Atlas (TCGA) database was performed. The expression was then correlated with the prognosis of patients with LGG and then verified using the Tumor Immune Estimation Resource (TIMER) and TCGA databases. Cox regression was employed to conduct multifactorial analysis and was followed by the construction of an internally validated nomogram based on these results. To investigate the possible mechanisms, we used gene set enrichment analysis (GSEA). We conducted a retrospective analysis of the clinical information of patients with LGG who were treated at Longgang Central Hospital of Shenzhen from January 2018 to December 2020 and from whom tumor and peritumoral tissues were taken during surgery. Expression of essential genes was identified by employing quantitative real-time polymerase chain reaction (qRT-PCR). Multivariate analysis, via Cox regression, was employed to determine the prognostic factors for patients with LGG. Results The transcriptional activity of SIGLEC8 was found to be elevated in LGG neoplastic tissues compared to neighboring nonneoplastic tissues. Overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) were improved in patients with LGG with reduced expression of SIGLEC8 as compared to those with increased expression of SIGLEC8. The nomogram's C-index is 0.804 (0.781-0.827). indicating good predictive accuracy. GSEA revealed that SIGLEC8 might influence LGG biological events by participating in the PD-1, IL3, JAK/STAT, and PI3KCI signal transduction pathways, as well as cytokine and inflammatory response, cell cycle, homeostasis, and extracellular matrix. This study included 72 patients with LGG. qRT-PCR showed upregulated SIGLEC8 expression in LGG tumor tissues, which was significantly associated with tumor number and metastasis to the lymph nodes (P<0.05). Multivariate analysis using Cox regression identified the high expression of SIGLEC8 as an independent risk factor in LGG prognosis (P<0.05). Conclusions For the prognosis of patients with LGG, the transcriptional activity of SIGLEC8 is increased in LGG tissues and is an independent risk factor. Interference with SIGLEC8 could promote tumor progression by regulating the JAK/STAT signaling pathway, indicating that SIGLEC8 may function as a distinctive predictive biomarker for patients with LGG.
Collapse
Affiliation(s)
- Lizhi Yi
- Department of Neurosurgery, Longgang Central Hospital of Shenzhen, Shenzhen, China
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Wenlong Kong
- Department of Neurosurgery, Longgang Central Hospital of Shenzhen, Shenzhen, China
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhisong Jiu
- Department of Neurosurgery, Longgang Central Hospital of Shenzhen, Shenzhen, China
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhengxian Huang
- Department of Neurosurgery, Longgang Central Hospital of Shenzhen, Shenzhen, China
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Peng Na
- Department of Neurosurgery, Longgang Central Hospital of Shenzhen, Shenzhen, China
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Wei Chen
- Department of Neurosurgery, Longgang Central Hospital of Shenzhen, Shenzhen, China
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xilong Yin
- Department of Neurosurgery, Longgang Central Hospital of Shenzhen, Shenzhen, China
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
2
|
Yang Y, Hong Y, Zhao K, Huang M, Li W, Zhang K, Zhao N. Spatial transcriptomics analysis identifies therapeutic targets in diffuse high-grade gliomas. Front Mol Neurosci 2024; 17:1466302. [PMID: 39530009 PMCID: PMC11552449 DOI: 10.3389/fnmol.2024.1466302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Diffuse high-grade gliomas are the most common malignant adult neuroepithelial tumors in humans and a leading cause of cancer-related death worldwide. The advancement of high throughput transcriptome sequencing technology enables rapid and comprehensive acquisition of transcriptome data from target cells or tissues. This technology aids researchers in understanding and identifying critical therapeutic targets for the prognosis and treatment of diffuse high-grade glioma. Methods Spatial transcriptomics was conducted on two cases of isocitrate dehydrogenase (IDH) wild-type diffuse high-grade glioma (Glio-IDH-wt) and two cases of IDH-mutant diffuse high-grade glioma (Glio-IDH-mut). Gene set enrichment analysis and clustering analysis were employed to pinpoint differentially expressed genes (DEGs) involved in the progression of diffuse high-grade gliomas. The spatial distribution of DEGs in the spatially defined regions of human glioma tissues was overlaid in the t-distributed stochastic neighbor embedding (t-SNE) plots. Results We identified a total of 10,693 DEGs, with 5,677 upregulated and 5,016 downregulated, in spatially defined regions of diffuse high-grade gliomas. Specifically, SPP1, IGFBP2, CALD1, and TMSB4X exhibited high expression in carcinoma regions of both Glio-IDH-wt and Glio-IDH-mut, and 3 upregulated DEGs (SMOC1, APOE, and HIPK2) and 4 upregulated DEGs (PPP1CB, UBA52, S100A6, and CTSB) were only identified in tumor regions of Glio-IDH-wt and Glio-IDH-mut, respectively. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analyses revealed that upregulated DEGs were closely related to PI3K/Akt signaling pathway, virus infection, and cytokine-cytokine receptor interaction. Importantly, the expression of these DEGs was validated using GEPIA databases. Furthermore, the study identified spatial expression patterns of key regulatory genes, including those involved in protein post-translational modification and RNA binding protein-encoding genes, with spatially defined regions of diffuse high-grade glioma. Discussion Spatial transcriptome analysis is one of the breakthroughs in the field of medical biotechnology as this can map the analytes such as RNA information in their physical location in tissue sections. Our findings illuminate previously unexplored spatial expression profiles of key biomarkers in diffuse high-grade glioma, offering novel insight for the development of therapeutic strategies in glioma.
Collapse
Affiliation(s)
- Yongtao Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yingzhou Hong
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Kai Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Minhao Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenhu Li
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kui Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ninghui Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
3
|
Dong Z, Dai B, Wu R, Fang K, Sui C, Geng L, Yang J. Expression Characteristics, Immune Signature, and Prognostic Value of the SOCS Family Identified by Multiomics Integrative Analysis in Liver Cancer. Cancer Rep (Hoboken) 2024; 7:e2161. [PMID: 39307915 PMCID: PMC11416904 DOI: 10.1002/cnr2.2161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a prevalent malignancy with a high mortality rate worldwide. Suppressor of cytokine signaling (SOCS) family members play important roles in the proliferation, metabolism, and immunity of HCC cells by regulating cytokines and growth factors. However, it remains uncertain whether the level of SOCS family members can affect the prognosis of HCC patients. AIMS This study aimed to comprehensively assess the role and mechanisms of SOCS family members in the development of HCC and to guide clinical selection. METHODS We investigated the expression levels of SOCS family genes in HCC patients and their associations with various clinicopathological characteristics. We also utilized a public database to analyze the changes in the expression, potential functions, transcription factors, and immune invasion of SOCS family members. Additionally, we examined the prognostic value of the SOC family for HCC and its correlation with the SOC family and ferroptosis-related genes. RESULTS This study revealed that the expression of SOCS2-7, and CISH was downregulated in HCC. The SOCS4, SOCS5, and SOCS7 genes were associated with the clinicopathological features of HCC patients. SOCS family genes are mainly related to the PIK3R3, GHR, and TNS4 pathways. Additionally, this study revealed that STAT3, PPAR-gamma 2, and IRF-2 are important transcription factors that regulate SOCS family members. The expression levels of SOCS family members are closely related to immune infiltration in liver cancer. The study also indicated that SOCS2 and SOCS4 are risk-related genes for predicting the prognosis of patients with liver cancer. Finally, this study suggested that the SOCS2 gene may be involved in the development and progression of HCC. CONCLUSION Our study enhances the current understanding of SOCS gene function in liver cancer and can help clinicians select appropriate drugs and predict the prognosis of HCC patients.
Collapse
Affiliation(s)
- Zhitao Dong
- Department of Special TreatmentShanghai Eastern Hepatobiliary Surgery HospitalShanghaiChina
| | - Binghua Dai
- Department of Special TreatmentShanghai Eastern Hepatobiliary Surgery HospitalShanghaiChina
| | - Rui Wu
- Department of Special TreatmentShanghai Eastern Hepatobiliary Surgery HospitalShanghaiChina
| | - Kunpeng Fang
- Department of Special TreatmentShanghai Eastern Hepatobiliary Surgery HospitalShanghaiChina
| | - Chengjun Sui
- Department of Special TreatmentShanghai Eastern Hepatobiliary Surgery HospitalShanghaiChina
| | - Li Geng
- Department of Special TreatmentShanghai Eastern Hepatobiliary Surgery HospitalShanghaiChina
| | - Jiamei Yang
- Department of Special TreatmentShanghai Eastern Hepatobiliary Surgery HospitalShanghaiChina
| |
Collapse
|
4
|
Ji Q, Tu Z, Liu J, Zhou Z, Li F, Zhu X, Huang K. RUNX1-PDIA5 Axis Promotes Malignant Progression of Glioblastoma by Regulating CCAR1 Protein Expression. Int J Biol Sci 2024; 20:4364-4381. [PMID: 39247813 PMCID: PMC11379074 DOI: 10.7150/ijbs.92595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 07/28/2024] [Indexed: 09/10/2024] Open
Abstract
PDIA5 is responsible for modification of disulfide bonds of proteins. However, its impact on the malignant progression of glioblastoma multiforme (GBM) remains unknown. We analyzed the expression and prognostic significance of PDIA5 in cohorts of GBM and clinical samples. The PDIA5 protein was significantly overexpressed in GBM tissues, and higher expression of PDIA5 was statistically associated with a worse prognosis in patients with GBM. Transcriptional data from PDIA5 knockdown GBM cells revealed that downstream regulatory genes of PDIA5 were enriched in malignant regulatory pathways and PDIA5 enhanced the proliferative and invasive abilities of GBM cells. By constructing a PDIA5 CXXC motif mutant plasmid, we found CCAR1 was the vital downstream factor of PDIA5 in regulating GBM malignancy in vitro and in vivo. Additionally, RUNX1 bound to the promoter region of PDIA5 and regulated gene transcription, leading to activation of the PDIA5/CCAR1 regulatory axis in GBM. The RUNX1/PDIA5/CCAR1 axis significantly influenced the malignant behavior of GBM cells. In conclusion, this study comprehensively elucidates the crucial role of PDIA5 in the malignant progression of GBM. Downregulating PDIA5 can mitigate the malignant biological behavior of GBM both in vitro and in vivo, potentially improving the efficacy of treatment for clinical patients with GBM.
Collapse
Affiliation(s)
- Qiankun Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, P. R. China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, P. R. China
- Department of Neurosurgery, Zhoukou Central Hospital, Zhoukou, Henan 466000, P. R. China
| | - Zewei Tu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, P. R. China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, P. R. China
| | - Junzhe Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, P. R. China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, P. R. China
| | - Zhihong Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, P. R. China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, P. R. China
| | - Fengze Li
- Queen Mary School, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, P. R. China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, P. R. China
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, P. R. China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, P. R. China
| |
Collapse
|
5
|
Chen X, Wang L, Yang M, Zhao W, Tu J, Liu B, Yuan X. RUNX transcription factors: biological functions and implications in cancer. Clin Exp Med 2024; 24:50. [PMID: 38430423 PMCID: PMC10908630 DOI: 10.1007/s10238-023-01281-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/10/2023] [Indexed: 03/03/2024]
Abstract
Runt-related transcription factors (RUNX) are a family of transcription factors that are essential for normal and malignant hematopoietic processes. Their most widely recognized role in malignancy is to promote the occurrence and development of acute myeloid leukemia. However, it is worth noting that during the last decade, studies of RUNX proteins in solid tumors have made considerable progress, suggesting that these proteins are directly involved in different stages of tumor development, including tumor initiation, progression, and invasion. RUNX proteins also play a role in tumor angiogenesis, the maintenance of tumor cell stemness, and resistance to antitumor drugs. These findings have led to the consideration of RUNX as a tumor biomarker. All RUNX proteins are involved in the occurrence and development of solid tumors, but the role of each RUNX protein in different tumors and the major signaling pathways involved are complicated by tumor heterogeneity and the interacting tumor microenvironment. Understanding how the dysregulation of RUNX in tumors affects normal biological processes is important to elucidate the molecular mechanisms by which RUNX affects malignant tumors.
Collapse
Affiliation(s)
- Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China
| | - Lu Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China
| | - Mu Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China
| | - Weiheng Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China
| | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China.
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China.
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China.
| |
Collapse
|
6
|
Qi P, Zhai Q, Zhang X. RUNX1 facilitates heart failure progression through regulating TGF-β-induced cardiac remodeling. PeerJ 2023; 11:e16202. [PMID: 37927796 PMCID: PMC10624168 DOI: 10.7717/peerj.16202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/07/2023] [Indexed: 11/07/2023] Open
Abstract
Background Heart failure is caused by acute or chronic cardiovascular diseases with limited treatments and unclear pathogenesis. Therefore, it is urgent to explore new therapeutic targets and reveal new pathogenesis for heart failure. Methods We carried out heart failure animal model by transverse aortic arch constriction (TAC) in mice. The left ventricular internal diameter diastole (LVIDd), left ventricular internal diameter systole (LVIDs), and ejection fraction (EF) value were detected using ultrasound and myocardial fibrosis was evaluated by Masson stain assay. Cell apoptosis in myocardial tissues were detected by TUNEL immunofluorescence stain. Signal pathway analysis was performed by dual-luciferase reporter assay and western blot. Results Our results showed that inhibition of RUNX1 led to remission of cardiac enlargement induced by TAC in mice. Inhibition of RUNX1 also caused raise of EF and FS value under TAC-induced condition. Besides, RUNX1 inhibition mice showed decreased myocardial fibrosis area under TAC-induced condition. RUNX1 inhibition caused decrease of apoptotic cell rate in myocardial tissues under TAC. Interestingly, we found that RUNX1 could promote the activation of TGF-β/Smads in dual-luciferase reporter assay. Interpretation We illustrated that RUNX1 could be considered as a new regulator of myocardial remodeling by activating TGF-β/Smads signaling. Based on this, we concluded that RUNX1 may be developed as a new therapeutic target against heart failure in the future. In addition, this study also provide a new insight for the etiological study on heart failure.
Collapse
Affiliation(s)
- Peng Qi
- Department of Cardiac Surgery Intensive Care Unit, Qilu Hospital of Shandong University, Jinan, China
| | - Qian Zhai
- Department of Cardiac Surgery Intensive Care Unit, Qilu Hospital of Shandong University, Jinan, China
| | - Xiquan Zhang
- Department of Cardiac Surgery, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
7
|
Guo Z, Liu X, Zhao S, Sun F, Ren W, Ma M. RUNX1 promotes liver fibrosis progression through regulating TGF-β signalling. Int J Exp Pathol 2023; 104:188-198. [PMID: 37070207 PMCID: PMC10349244 DOI: 10.1111/iep.12474] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 04/19/2023] Open
Abstract
Liver fibrosis is caused by chronic liver injury. There are limited treatments for it, and the pathogenesis is unclear. Therefore, there is an urgent need to explore the pathogenesis of liver fibrosis, and to try to identify new potential therapeutic targets. For this study we used the carbon tetrachloride abdominal injection induced liver fibrosis animal model in mice. Primary hepatic stellate cell isolation was performed by a density-gradient separation method, and this was followed by immunofluorescence stain analyses. Signal pathway analysis was performed by dual-luciferase reporter assay and western blotting. Our results showed that RUNX1 was upregulated in cirrhotic liver tissues compared with normal liver tissues. Besides, overexpression of RUNX1 caused more severe liver fibrosis lesions than control group under CCl4 -induced conditions. Moreover, α-SMA expression in the RUNX1 overexpression group was significantly higher than in the control group. Interestingly, we found that RUNX1 could promote the activation of TGF-β/Smads in a dual-luciferase reporter assay. Thus we demonstrated that RUNX1 could be considered as a new regulator of hepatic fibrosis by activating TGF-β/Smads signalling. Based on this, we concluded that RUNX1 may be developed as a new therapeutic target in the treatment of liver fibrosis in the future. In addition, this study also provides a new insight about the aetiology of liver fibrosis.
Collapse
Affiliation(s)
- Zhaoyang Guo
- Department of Infectious Diseases, Shandong Provincial HospitalShandong UniversityJinanChina
- Department of Infectious DiseasesShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Xinxin Liu
- Department of Digestive Endoscopy CenterShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Shulei Zhao
- Department of GastroenterologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Fengkai Sun
- Department of GastroenterologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- School of Basic Medical Sciences, Cheeloo Medical CollegeShandong UniversityJinanShandongChina
| | - Wanhua Ren
- Department of Infectious Diseases, Shandong Provincial HospitalShandong UniversityJinanChina
- Department of Infectious DiseasesShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Mingze Ma
- Department of Infectious Diseases, Shandong Provincial HospitalShandong UniversityJinanChina
- Department of Infectious DiseasesShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| |
Collapse
|
8
|
Qiu W, Xiao Z, Yang Y, Jiang L, Song S, Qi X, Chen Y, Yang H, Liu J, Chu L. USP10 deubiquitinates RUNX1 and promotes proneural-to-mesenchymal transition in glioblastoma. Cell Death Dis 2023; 14:207. [PMID: 36949071 PMCID: PMC10033651 DOI: 10.1038/s41419-023-05734-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023]
Abstract
The mesenchymal (MES) subtype of glioblastoma (GBM) is a highly aggressive, malignant and proliferative cancer that is resistant to chemotherapy. Runt-related transcription factor 1 (RUNX1) was shown to support MES GBM, however, its underlying mechanisms are unclear. Here, we identified USP10 as a deubiquitinating enzyme that regulates RUNX1 stabilization and is mainly expressed in MES GBM. Overexpression of USP10 upregulated RUNX1 and induced proneural-to-mesenchymal transition (PMT), thus maintaining MES properties in GBM. Conversely, USP10 knockdown inhibited RUNX1 and resulted in the loss of MES properties. USP10 was shown to interact with RUNX1, with RUNX1 being stabilized upon deubiquitylation. Moreover, we found that USP10 inhibitor Spautin-1 induced RUNX1 degradation and inhibited MES properties in vitro and in vivo. Furthermore, USP10 was strongly correlated with RUNX1 expression in samples of different subtypes of human GBM and had prognostic value for GBM patients. We identified USP10 as a key deubiquitinase for RUNX1 protein stabilization. USP10 maintains MES properties of GBM, and promotes PMT of GBM cells. Our study indicates that the USP10/RUNX1 axis may be a potential target for novel GBM treatments.
Collapse
Affiliation(s)
- Wenjin Qiu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou, China
| | - Zumu Xiao
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou, China
| | - Yushi Yang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Lishi Jiang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou, China
| | - Shibin Song
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yimin Chen
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou, China
| | - Hua Yang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou, China
| | - Jian Liu
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, 550001, Guizhou, China.
| | - Liangzhao Chu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou, China.
| |
Collapse
|