1
|
Lui VCH. Organoids in biliary atresia. WORLD JOURNAL OF PEDIATRIC SURGERY 2025; 8:e001010. [PMID: 40385243 PMCID: PMC12083310 DOI: 10.1136/wjps-2025-001010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/27/2025] [Indexed: 05/20/2025] Open
Abstract
Organoids are three-dimensional and self-organizing cell cultures of various lineages that resemble structures and functions of an organ in many ways, and they are versatile tools in disease modeling and patho-mechanistic study of human diseases affecting their tissues of origin. Biliary atresia (BA), a cholangiopathy affecting the bile ducts of the liver, is a heterogeneous and multifaceted liver disease of complex pathogenesis. Cholangiopathies refer to a category of liver diseases that affect the cholangiocytes, the epithelial cells lining the lumen of the biliary trees. Biliary organoids consist of cholangiocytes in a spherical monolayer epithelium, which favorably resembles the structures and functional properties of the bile duct cholangiocytes. Biliary tissue-derived cells, pluripotent stem cells or embryonic stem cells, and hepatic progenitor cells are capable of generating biliary organoids. In the last decade, a considerable advancement has been made in the generation of biliary organoids for modeling liver physiology and pathophysiology. Using biliary organoids, scientists have advanced our knowledge underlying the pathogenic roles of genetic susceptibility, dysregulated hepatobiliary development/structure, environmental factors, and dysregulated immune-inflammatory responses to an injury in BA. This review will summarize and discuss the derivation and the use of biliary organoids in the disease modeling and patho-mechanistic study of BA.
Collapse
|
2
|
Kamp JC, Madadi-Sanjani O, Uecker M, Werlein C, Neubert L, Kübler JF, Obed M, Junge N, Welte T, Ruwisch J, Jonigk DD, Stolk J, Vieten G, Janciauskiene S. Amyloid precursor protein as a fibrosis marker in infants with biliary atresia. Pediatr Res 2025; 97:1696-1705. [PMID: 39341941 PMCID: PMC12119347 DOI: 10.1038/s41390-024-03582-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/29/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Biliary atresia (BA) is a rare condition of unknown origin in newborns with jaundice. In BA bile ducts are non-functional, causing neonatal cholestasis and following liver fibrosis and failure. METHODS This retrospective study included liver biopsies of 14 infants with BA aged [mean ± SD] 63 ± 23 days. Patients were grouped according to the clinical course (jaundice-free vs recurrent jaundice vs required liver transplantation or liver fibrosis (Ishak fibrosis score)) and followed for 1.61-5.64 years (mean 4.03). Transcriptome profiles were assessed using a panel of 768 fibrosis-specific genes, reanalyzed via qRT-PCR, and confirmed via immunostaining. Plasma from an additional 30 BA infants and 10 age-matched controls were used for amyloid precursor protein (APP) quantification by ELISA. RESULTS Different clinical outcome groups showed a homogeneous mRNA expression. Altered amyloid-metabolism-related gene expression was found between cases with Ishak fibrosis score greater than 4. Immunostaining confirmed a distinct presence of APP in the livers of all BA subjects. APP plasma levels were higher in BA than in age-matched controls and correlated with the histological fibrosis grade. CONCLUSIONS These results suggest that amyloidosis may contribute to BA and liver fibrosis, indicating that APP could serve as a potential liquid biomarker for these conditions. IMPACT Biliary atresia patients with higher fibrosis scores according to Ishak have higher hepatic expression of amyloid-related genes while amyloid precursor protein accumulates in the liver and increases in the circulation. After a recent study revealed beta-amyloid deposition as a mechanism potentially involved in biliary atresia, we were able to correlate amyloid-metabolism-related transcript levels as well as amyloid precursor protein tissue and plasma levels with the degree of hepatic fibrosis. These findings suggest that amyloid precursor protein is a fibrosis marker in infants with biliary atresia, reinforcing the role of amyloid metabolism in the pathogenesis of this serious disease.
Collapse
Affiliation(s)
- Jan C Kamp
- Department of Respiratory and Infectious Medicine, Hannover Medical School, Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany.
| | | | - Marie Uecker
- Centre of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Christopher Werlein
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Lavinia Neubert
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Joachim F Kübler
- Centre of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Mikal Obed
- Centre of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Norman Junge
- Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- Department of Respiratory and Infectious Medicine, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Jannik Ruwisch
- Department of Respiratory and Infectious Medicine, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Danny D Jonigk
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Institute of Pathology, RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Jan Stolk
- Department of Pulmonology, Leiden University Medical Center, Member of European Reference Network Lung, Section Alpha-1-Antitrypsin Deficiency, Leiden, The Netherlands
| | - Gertrud Vieten
- Centre of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Sabina Janciauskiene
- Department of Respiratory and Infectious Medicine, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|