1
|
Haedge F, Reuken PA, Reißing J, Große K, Frissen M, El‐Hassani M, Aschenbach R, Teichgräber U, Stallmach A, Bruns T. Surrogate Markers of Intestinal Permeability, Bacterial Translocation and Gut-Vascular Barrier Damage Across Stages of Cirrhosis. Liver Int 2025; 45:e70119. [PMID: 40317887 PMCID: PMC12047066 DOI: 10.1111/liv.70119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 03/24/2025] [Accepted: 04/21/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND AND AIMS Portal hypertension, gut barrier dysfunction, and pathological bacterial translocation are hallmarks of cirrhosis driving complications. As measuring gut barrier function is demanding, surrogate markers have been proposed, but their intercorrelation and applicability across different stages of advanced liver disease, particularly in acute-on-chronic liver failure (ACLF), are largely unknown. METHODS Proposed markers of gut barrier dysfunction and bacterial translocation were quantified in sera from 160 patients with cirrhosis across different disease stages of compensated and decompensated cirrhosis as well as from 20 patients in hepatic and portal vein serum before and after the insertion of transjugular intrahepatic portosystemic stent (TIPS) using enzyme-linked immunosorbent assay (ELISA). RESULTS Across all stages of liver disease, the gut-vascular barrier (GVB) marker plasmalemma vesicle protein-1 (PV-1) correlated with bacterial translocation markers endogenous endotoxin-core IgA antibodies (EndoCAb) and LPS-binding protein (LBP) but not with intestinal damage markers intestinal fatty acid binding protein (I-FABP) and zonulin-family peptides (ZFP). PV-1 and EndoCAb were higher in decompensated cirrhosis without further increase in ACLF. Among investigated markers, only I-FABP correlated with the portosystemic pressure gradient, and TIPS insertion significantly reduced portal concentrations within 24 h. Higher PV-1 levels indicated poor transplant-free survival in univariate and multivariable analysis. CONCLUSIONS Surrogate markers of bacterial gut barrier dysfunction and bacterial translocation like ZFP, LBP and EndoCAb appear of limited use in advanced stages of cirrhosis and are confounded by hepatic synthesis capacity, portal congestion and acute phase responses. The prognostic implications of circulating PV-1 in decompensated cirrhosis levels demand further investigation.
Collapse
Affiliation(s)
- Frederic Haedge
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenAachenGermany
| | - Philipp A. Reuken
- Department of Internal Medicine IVJena University Hospital, Friedrich Schiller University JenaJenaGermany
| | - Johanna Reißing
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenAachenGermany
| | - Karsten Große
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenAachenGermany
| | - Mick Frissen
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenAachenGermany
| | - Majda El‐Hassani
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenAachenGermany
| | - Rene Aschenbach
- Department of RadiologyJena University Hospital, Friedrich Schiller University JenaJenaGermany
| | - Ulf Teichgräber
- Department of RadiologyJena University Hospital, Friedrich Schiller University JenaJenaGermany
| | - Andreas Stallmach
- Department of Internal Medicine IVJena University Hospital, Friedrich Schiller University JenaJenaGermany
| | - Tony Bruns
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenAachenGermany
| |
Collapse
|
2
|
Soranno DE, Coopersmith CM, Brinkworth JF, Factora FNF, Muntean JH, Mythen MG, Raphael J, Shaw AD, Vachharajani V, Messer JS. A review of gut failure as a cause and consequence of critical illness. Crit Care 2025; 29:91. [PMID: 40011975 PMCID: PMC11866815 DOI: 10.1186/s13054-025-05309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/05/2025] [Indexed: 02/28/2025] Open
Abstract
In critical illness, all elements of gut function are perturbed. Dysbiosis develops as the gut microbial community loses taxonomic diversity and new virulence factors appear. Intestinal permeability increases, allowing for translocation of bacteria and/or bacterial products. Epithelial function is altered at a cellular level and homeostasis of the epithelial monolayer is compromised by increased intestinal epithelial cell death and decreased proliferation. Gut immunity is impaired with simultaneous activation of maladaptive pro- and anti-inflammatory signals leading to both tissue damage and susceptibility to infections. Additionally, splanchnic vasoconstriction leads to decreased blood flow with local ischemic changes. Together, these interrelated elements of gastrointestinal dysfunction drive and then perpetuate multi-organ dysfunction syndrome. Despite the clear importance of maintaining gut homeostasis, there are very few reliable measures of gut function in critical illness. Further, while multiple therapeutic strategies have been proposed, most have not been shown to conclusively demonstrate benefit, and care is still largely supportive. The key role of the gut in critical illness was the subject of the tenth Perioperative Quality Initiative meeting, a conference to summarize the current state of the literature and identify key knowledge gaps for future study. This review is the product of that conference.
Collapse
Affiliation(s)
- Danielle E Soranno
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Craig M Coopersmith
- Department of Surgery and Emory Critical Care Center, Emory University, Atlanta, GA, USA
| | - Jessica F Brinkworth
- Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Faith N F Factora
- Intensive Care and Resuscitation, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Julia H Muntean
- Intensive Care and Resuscitation, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Monty G Mythen
- Perioperative Medicine, University College London, London, England
| | - Jacob Raphael
- Anesthesiology and Perioperative Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Andrew D Shaw
- Intensive Care and Resuscitation, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Vidula Vachharajani
- Department of Pulmonary and Critical Care, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Jeannette S Messer
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
3
|
Liu Q, Wang Z, Sun S, Nemes J, Brenner LA, Hoisington A, Skotak M, LaValle CR, Ge Y, Carr W, Haghighi F. Association of Blast Exposure in Military Breaching with Intestinal Permeability Blood Biomarkers Associated with Leaky Gut. Int J Mol Sci 2024; 25:3549. [PMID: 38542520 PMCID: PMC10971443 DOI: 10.3390/ijms25063549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Injuries and subclinical effects from exposure to blasts are of significant concern in military operational settings, including tactical training, and are associated with self-reported concussion-like symptomology and physiological changes such as increased intestinal permeability (IP), which was investigated in this study. Time-series gene expression and IP biomarker data were generated from "breachers" exposed to controlled, low-level explosive blast during training. Samples from 30 male participants at pre-, post-, and follow-up blast exposure the next day were assayed via RNA-seq and ELISA. A battery of symptom data was also collected at each of these time points that acutely showed elevated symptom reporting related to headache, concentration, dizziness, and taking longer to think, dissipating ~16 h following blast exposure. Evidence for bacterial translocation into circulation following blast exposure was detected by significant stepwise increase in microbial diversity (measured via alpha-diversity p = 0.049). Alterations in levels of IP protein biomarkers (i.e., Zonulin, LBP, Claudin-3, I-FABP) assessed in a subset of these participants (n = 23) further evidenced blast exposure associates with IP. The observed symptom profile was consistent with mild traumatic brain injury and was further associated with changes in bacterial translocation and intestinal permeability, suggesting that IP may be linked to a decrease in cognitive functioning. These preliminary findings show for the first time within real-world military operational settings that exposures to blast can contribute to IP.
Collapse
Affiliation(s)
- Qingkun Liu
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (Q.L.); (Z.W.); (S.S.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Zhaoyu Wang
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (Q.L.); (Z.W.); (S.S.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Shengnan Sun
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (Q.L.); (Z.W.); (S.S.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Jeffrey Nemes
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA (C.R.L.); (W.C.)
| | - Lisa A. Brenner
- Rocky Mountain Mental Illness, Research, Education and Clinical Care, Department of Veterans Affairs, Aurora, CO 80045, USA; (L.A.B.); (A.H.)
- Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Andrew Hoisington
- Rocky Mountain Mental Illness, Research, Education and Clinical Care, Department of Veterans Affairs, Aurora, CO 80045, USA; (L.A.B.); (A.H.)
- Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
- Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson Air Force Base, OH 45433, USA
| | - Maciej Skotak
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA (C.R.L.); (W.C.)
| | - Christina R. LaValle
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA (C.R.L.); (W.C.)
| | - Yongchao Ge
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Walter Carr
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA (C.R.L.); (W.C.)
| | - Fatemeh Haghighi
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (Q.L.); (Z.W.); (S.S.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
4
|
Niu P, Zhao W, Wang Q, Duan J, Zhu J, Fu H, Wu Y, Zheng X, Zhang D, Ge C. Toll-like Receptor Agonist CBLB502 Protects Against Cisplatin-induced Liver and Kidney Damage in Mice. In Vivo 2023; 37:2044-2056. [PMID: 37652484 PMCID: PMC10500535 DOI: 10.21873/invivo.13302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND/AIM CBLB502, a Toll-like receptor-5 agonist derived from Salmonella flagellin, exerts protective roles against irradiation and chemical drugs in mammalian tissues and stimulates tissue regeneration. This study aimed to investigate whether CBLB502 can protect against liver and kidney damage induced by the chemotherapeutic drug cisplatin (CDDP) and the underlying mechanism of the protective effect. MATERIALS AND METHODS Mice were pretreated with CBLB502 [0.2 mg/kg, intraperitoneal (i.p.) injection] 0.5 h prior to administration of CDDP (20 mg/kg, i.p. injection), and analyses of the liver and kidney indices, blood biochemistry, and histopathology were performed. RESULTS Pretreatment with CBLB502 alleviated CDDP-induced liver and kidney damage. RNA sequencing and bioinformatic analysis indicated that CDDP induced a similar damage-promoting gene regulation pattern in the liver and kidney. CBLB502 protected against liver and kidney damage only after CDDP treatment primarily via different pathways. However, some CBLB502-regulated genes were common between the liver and kidney, including those involved in blood coagulation, fibrinolysis, hemostasis, apoptotic regulation, NF-kappaB signaling, and response to lipopolysaccharide, suggesting a general protective effect by CBLB502. CONCLUSION Our data provide insights into the protective mechanism of CBLB502 against CDDP-induced tissue damage in the liver and kidney and might provide a basis for future studies on functional genes and regulatory mechanisms that mediate protection against chemoradiotherapy-induced damage.
Collapse
Affiliation(s)
- Pengzhen Niu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, P.R. China
| | - Wenyu Zhao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, P.R. China
| | - Qiong Wang
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
- Graduate School of Anhui Medical University, Hefei, P.R. China
| | - Junzhao Duan
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Jie Zhu
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Hanjiang Fu
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Yongge Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, P.R. China
| | - Xiaofei Zheng
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Daguang Zhang
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, P.R. China
| | - Changhui Ge
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, P.R. China;
- Graduate School of Anhui Medical University, Hefei, P.R. China
| |
Collapse
|
5
|
Sharygin D, Koniaris LG, Wells C, Zimmers TA, Hamidi T. Role of CD14 in human disease. Immunology 2023; 169:260-270. [PMID: 36840585 PMCID: PMC10591340 DOI: 10.1111/imm.13634] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
The cell surface antigen CD14 is primarily understood to act as a co-receptor for toll-like receptors (TLRs) to activate innate immunity responses to pathogens and tissue injury in macrophages and monocytes. However, roles for CD14 are increasingly being uncovered in disease responses in epithelial and endothelial cells. Consistent with these broader functions, CD14 expression is altered in a variety of non-immune cell types in response to a several of disease states. Moreover, soluble CD14 activated by factors from both pathogens and tissue damage may initiate signalling in a variety of non-immune cells. This review examined the current understanding CD14 in innate immunity as well as its potential functions in nonimmune cells and associated human diseases.
Collapse
Affiliation(s)
- Daniel Sharygin
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Chemistry, Massachusetts institute of technology, Cambridge, MA, USA
| | - Leonidas G. Koniaris
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Clark Wells
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Teresa A. Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Tewfik Hamidi
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
6
|
Zoghi S, Abbasi A, Heravi FS, Somi MH, Nikniaz Z, Moaddab SY, Ebrahimzadeh Leylabadlo H. The gut microbiota and celiac disease: Pathophysiology, current perspective and new therapeutic approaches. Crit Rev Food Sci Nutr 2022; 64:2176-2196. [PMID: 36154539 DOI: 10.1080/10408398.2022.2121262] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Celiac disease (CD) as a chronic gluten-sensitive intestinal condition, mainly affects genetically susceptible hosts. The primary determinants of CD have been identified as environmental and genetic variables. The development of CD is significantly influenced by environmental factors, including the gut microbiome. Therefore, gut microbiome re-programming-based therapies using probiotics, prebiotics, postbiotics, gluten-free diet, and fecal microbiota transplantation have shown promising results in the modification of the gut microbiome. Due to the importance and paucity of information regarding the CD pathophysiology, in this review, we have covered the association between CD development and gut microbiota, the effects of infectious agents, particularly the recent Covid-19 infection in CD patients, and the efficacy of potential therapeutic approaches in the CD have been discussed. Hence, scientific literature indicates that the diverse biological functions of the gut microbiota against immunomodulatory responses have made microbiome-based therapy an alternative therapeutic paradigm to ameliorate the symptoms of CD and quality of life. However, the exact potential of microbiota-based techniques that aims to quantitatively and qualitatively alter the gut microbiota to be used in the treatment and ameliorate the symptoms of CD will be determined with further research in the future.
Collapse
Affiliation(s)
- Sevda Zoghi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Nikniaz
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Yaghoub Moaddab
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
7
|
Kociszewska D, Vlajkovic SM. The Association of Inflammatory Gut Diseases with Neuroinflammatory and Auditory Disorders. Front Biosci (Elite Ed) 2022; 14:8. [PMID: 35730449 DOI: 10.31083/j.fbe1402008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 11/06/2022]
Abstract
Disorders such as inflammatory bowel disease (IBD) and celiac disease (CeD) result in intestinal hyperpermeability or 'leaky' gut. The increased permeability of the intestinal barrier allows microbial metabolites, toxins, and pathogens to infiltrate the bloodstream and extraintestinal tissues, causing systemic inflammation. Despite differences in aetiology and pathophysiology, IBD and CeD share several extraintestinal manifestations such as neuroinflammation, neurological and psychiatric manifestations, and sensorineural hearing loss (SNHL). This narrative review focuses on the association between intestinal hyperpermeability with the brain and inner ear diseases. We postulate that the microbial metabolites and pathogens released from the gut increase the permeability of natural barriers, such as the blood-brain barrier (BBB) and blood-labyrinth barrier (BLB). The barrier breakdown allows the spreading of inflammatory processes to the brain and inner ear, leading to disease.
Collapse
Affiliation(s)
- Dagmara Kociszewska
- Department of Physiology and The Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 1142 Auckland, New Zealand
| | - Srdjan M Vlajkovic
- Department of Physiology and The Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 1142 Auckland, New Zealand
| |
Collapse
|