1
|
Wulff J, Koska B, Giese M, Bäumer C, Richter R, Foerster A, Bechrakis NE, Timmermann B. Evaluation of OPTOS wide-field fundus image projections for radiotherapy planning of uveal melanoma. J Appl Clin Med Phys 2025; 26:e70009. [PMID: 39962748 PMCID: PMC11969099 DOI: 10.1002/acm2.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/28/2024] [Accepted: 12/04/2024] [Indexed: 04/05/2025] Open
Abstract
PURPOSE To investigate the relationship between the stereographic and azimuthal equidistant projection (AEP) of the human retina for radiotherapy planning with OPTOS optomap wide-field fundus images (Optos, UK). Further, the geometric accuracy of an OPTOS fundus image is quantified. METHODS The fundamental relationship between both projection modes was applied to transform images acquired with an OPTOS Silverstone camera to the azimuthal equidistant projection using MATLAB. Fundus images of four patients were used to quantitatively demonstrate the impact for neglecting the proper projection. For that purpose, a delineated contour for each patient was analyzed if created in a treatment planning system, which assumes AEP, and compared with an OPTOS image. Furthermore, an eye model with a novel 3D printed retina pattern was used to quantify the geometric accuracy for an OPTOS optomap image. RESULTS The difference between both projections was found substantial, leading to a change in delineated contours of more than 5 mm in the investigated cases and a change of delineated area of more than 40%. The geometric accuracy of OPTOS images of a customized eye model was found to be 0.2 mm on average, increasing to at most ∼0.5 mm at eye angles of 81°. CONCLUSION The fundamental difference in the representation of the eye fundus needs to be accounted for in radiotherapy planning of uveal melanoma. The basic underlying relationship for transformation is known, but more research is required to quantify other aberrations. The novel use of 3D printed retina patterns with known dimensions is providing a flexible approach for further investigations.
Collapse
Affiliation(s)
- Jörg Wulff
- West German Proton Therapy Centre Essen (WPE)EssenGermany
- University Hospital EssenEssenGermany
- West German Cancer Centre (WTZ)EssenGermany
| | - Benjamin Koska
- West German Proton Therapy Centre Essen (WPE)EssenGermany
- University Hospital EssenEssenGermany
- West German Cancer Centre (WTZ)EssenGermany
| | - Michael Giese
- CoCreation Lab Produktinnovationen (CCLP)University Duisburg‐EssenEssenGermany
| | - Christian Bäumer
- West German Proton Therapy Centre Essen (WPE)EssenGermany
- University Hospital EssenEssenGermany
- West German Cancer Centre (WTZ)EssenGermany
- German Cancer Consortium (DKTK)EssenGermany
- Department of PhysicsTU Dortmund UniversityDortmundGermany
- Department of OphthalmologyUniversity Hospital EssenEssenGermany
| | - Ronald Richter
- West German Proton Therapy Centre Essen (WPE)EssenGermany
- University Hospital EssenEssenGermany
- West German Cancer Centre (WTZ)EssenGermany
- Department of Particle TherapyUniversity Hospital EssenEssenGermany
| | - Andreas Foerster
- University Hospital EssenEssenGermany
- Department of Particle TherapyUniversity Hospital EssenEssenGermany
| | - Nikolaos E. Bechrakis
- University Hospital EssenEssenGermany
- West German Cancer Centre (WTZ)EssenGermany
- Department of Particle TherapyUniversity Hospital EssenEssenGermany
| | - Beate Timmermann
- West German Proton Therapy Centre Essen (WPE)EssenGermany
- University Hospital EssenEssenGermany
- West German Cancer Centre (WTZ)EssenGermany
- German Cancer Consortium (DKTK)EssenGermany
- Department of Particle TherapyUniversity Hospital EssenEssenGermany
| |
Collapse
|
2
|
Fleury E, Pignol JP, Kiliç E, Milder M, van Rij C, Naus N, Yavuzyigitoglu S, den Toom W, Zolnay A, Spruijt K, van Vulpen M, Trnková P, Hoogeman M. Comparison of stereotactic radiotherapy and protons for uveal melanoma patients. Phys Imaging Radiat Oncol 2024; 31:100605. [PMID: 39050744 PMCID: PMC11268348 DOI: 10.1016/j.phro.2024.100605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Background and purpose Uveal melanoma (UM) is the most common primary ocular malignancy. We compared fractionated stereotactic radiotherapy (SRT) with proton therapy, including toxicity risks for UM patients. Materials and methods For a total of 66 UM patients from a single center, SRT dose distributions were compared to protons using the same planning CT. Fourteen dose-volume parameters were compared in 2-Gy equivalent dose per fraction (EQD2). Four toxicity profiles were evaluated: maculopathy, optic-neuropathy, visual acuity impairment (Profile I); neovascular glaucoma (Profile II); radiation-induced retinopathy (Profile III); and dry-eye syndrome (Profile IV). For Profile III, retina Mercator maps were generated to visualize the geographical location of dose differences. Results In 9/66 cases, (14 %) proton plans were superior for all dose-volume parameters. Higher T stages benefited more from protons in Profile I, especially tumors located within 3 mm or less from the optic nerve. In Profile II, only 9/66 cases resulted in a better proton plan. In Profile III, better retina volume sparing was always achievable with protons, with a larger gain for T3 tumors. In Profile IV, protons always reduced the risk of toxicity with a median RBE-weighted EQD2 reduction of 15.3 Gy. Conclusions This study reports the first side-by-side imaging-based planning comparison between protons and SRT for UM patients. Globally, while protons appear almost always better regarding the risk of optic-neuropathy, retinopathy and dry-eye syndrome, for other toxicity like neovascular glaucoma, a plan comparison is warranted. Choice would depend on the prioritization of risks.
Collapse
Affiliation(s)
- Emmanuelle Fleury
- Erasmus Medical Center Cancer Institute, University Medical Center, Department of Radiotherapy, Rotterdam, The Netherlands
- HollandPTC, Delft, The Netherlands
| | | | - Emine Kiliç
- Erasmus Medical Center, Department of Ophthalmology, Rotterdam, The Netherlands
- Erasmus Medical Center, Department of Clinical Genetics, Rotterdam, The Netherlands
| | - Maaike Milder
- Erasmus Medical Center Cancer Institute, University Medical Center, Department of Radiotherapy, Rotterdam, The Netherlands
| | - Caroline van Rij
- Erasmus Medical Center Cancer Institute, University Medical Center, Department of Radiotherapy, Rotterdam, The Netherlands
| | - Nicole Naus
- Erasmus Medical Center, Department of Ophthalmology, Rotterdam, The Netherlands
| | | | - Wilhelm den Toom
- Erasmus Medical Center Cancer Institute, University Medical Center, Department of Radiotherapy, Rotterdam, The Netherlands
| | - Andras Zolnay
- Erasmus Medical Center Cancer Institute, University Medical Center, Department of Radiotherapy, Rotterdam, The Netherlands
| | | | | | - Petra Trnková
- Erasmus Medical Center Cancer Institute, University Medical Center, Department of Radiotherapy, Rotterdam, The Netherlands
- Medical University of Vienna, Department of Radiation Oncology, Vienna, Austria
| | - Mischa Hoogeman
- Erasmus Medical Center Cancer Institute, University Medical Center, Department of Radiotherapy, Rotterdam, The Netherlands
- HollandPTC, Delft, The Netherlands
| |
Collapse
|
3
|
Wulff J, Koska B, Ahmad Khalil D, Richter R, Maximilian Bäcker C, Bäumer C, Foerster A, Bechrakis NE, Timmermann B. Uncertainties in ocular proton planning and their impact on required margins. Phys Med 2024; 121:103358. [PMID: 38643558 DOI: 10.1016/j.ejmp.2024.103358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/11/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024] Open
Abstract
PURPOSE To review required margins in ocular proton therapy (OPT) based on an uncertainty estimation and to compare them with widely used values. Further, uncertainties when using registered funduscopy images in the 3D model is investigated. METHODS An uncertainty budget in planning and delivery was defined to determine required aperture and range margins. Setup uncertainties were considered for a cohort of treated patients and tested in a worst-case estimation. Other uncertainties were based on a best-guess and knowledge of institutional specifics, e.g. range reproducibility. Margins for funduscopy registration were defined resulting from scaling, rotation and translation of the image. Image formation for a wide-field fundus camera was reviewed and compared to the projection employed in treatment planning systems. RESULTS Values for aperture and range with margins of 2.5 mm as reported in literature could be determined. Aperture margins appear appropriate for setup uncertainties below 0.5 mm, but depend on lateral penumbra. Range margins depend on depth and associated density uncertainty in tissue. Registration of funduscopy images may require margins of >2 mm, increasing towards the equator. Difference in the projection may lead to discrepancies of several mm. CONCLUSIONS The commonly used 2.5 mm aperture margin was validated as an appropriate choice, while range margins could be reduced for lower ranges. Margins may however not include uncertainties in contouring and possible microscopic spread. If a target base is contoured on registered funduscopy images care must be taken as they are subject to larger uncertainties. Multimodal imaging approach in OPT remains advisable.
Collapse
Affiliation(s)
- Jörg Wulff
- West German Proton Therapy Centre Essen (WPE), Essen, Germany; University Hospital Essen, Essen, Germany; West German Cancer Centre (WTZ), Essen, Germany.
| | - Benjamin Koska
- West German Proton Therapy Centre Essen (WPE), Essen, Germany; University Hospital Essen, Essen, Germany; West German Cancer Centre (WTZ), Essen, Germany
| | - Dalia Ahmad Khalil
- West German Proton Therapy Centre Essen (WPE), Essen, Germany; University Hospital Essen, Essen, Germany; West German Cancer Centre (WTZ), Essen, Germany; Department of Particle Therapy, Essen, Germany
| | - Ronald Richter
- West German Proton Therapy Centre Essen (WPE), Essen, Germany; University Hospital Essen, Essen, Germany; West German Cancer Centre (WTZ), Essen, Germany; Department of Particle Therapy, Essen, Germany
| | - Claus Maximilian Bäcker
- West German Proton Therapy Centre Essen (WPE), Essen, Germany; University Hospital Essen, Essen, Germany; West German Cancer Centre (WTZ), Essen, Germany
| | - Christian Bäumer
- West German Proton Therapy Centre Essen (WPE), Essen, Germany; University Hospital Essen, Essen, Germany; West German Cancer Centre (WTZ), Essen, Germany; German Cancer Consortium (DKTK), Essen, Germany; Department of Physics, TU Dortmund University, Dortmund, Germany
| | - Andreas Foerster
- University Hospital Essen, Essen, Germany; Department of Ophthalmology, University Hospital Essen, Essen, Germany
| | - Nikolaos E Bechrakis
- University Hospital Essen, Essen, Germany; West German Cancer Centre (WTZ), Essen, Germany; Department of Ophthalmology, University Hospital Essen, Essen, Germany
| | - Beate Timmermann
- West German Proton Therapy Centre Essen (WPE), Essen, Germany; University Hospital Essen, Essen, Germany; West German Cancer Centre (WTZ), Essen, Germany; Department of Particle Therapy, Essen, Germany; German Cancer Consortium (DKTK), Essen, Germany
| |
Collapse
|
4
|
Meltsner SG, Rodrigues A, Materin MA, Kirsch DG, Craciunescu O. Transitioning from a COMS-based plaque brachytherapy program to using eye physics plaques and plaque simulator treatment planning system: A single institutional experience. J Appl Clin Med Phys 2023; 24:e13902. [PMID: 36637797 PMCID: PMC10161060 DOI: 10.1002/acm2.13902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/08/2022] [Accepted: 12/15/2022] [Indexed: 01/14/2023] Open
Abstract
The aim of this work is to describe the implementation and commissioning of a plaque brachytherapy program using Eye Physics eye plaques and Plaque Simulator treatment planning system based on the experience of one institution with an established COMS-based plaque program. Although commissioning recommendations are available in official task groups publications such as TG-129 and TG-221, we found that there was a lack of published experiences with the specific details of such a transition and the practical application of the commissioning guidelines. The specific issues addressed in this paper include discussing the lack of FDA approval of the Eye Physics plaques and Plaque Simulator treatment planning system, the commissioning of the plaques and treatment planning system including considerations of the heterogeneity corrected calculations, and the implementation of a second check using an FDA-approved treatment planning system. We have also discussed the use of rental plaques, the analysis of plans using dose histograms, and the development of a quality management program. By sharing our experiences with the commissioning of this program this document will assist other institutions with the same task and act as a supplement to the recommendations in the recently published TG-221.
Collapse
Affiliation(s)
- Sheridan G Meltsner
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| | - Anna Rodrigues
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| | - Miguel A Materin
- Departments of Ophthalmology, Duke University, Durham, North Carolina, USA
| | - David G Kirsch
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| | - Oana Craciunescu
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
5
|
Liakopoulos DA, Perisinakis K, Solomou G, Kouvidakis A, Drakonaki EE, Bontzos G, Papadaki E, Detorakis ET. Individualized dosimetry in Ru-106 ophthalmic brachytherapy based on MRI-derived ocular anatomical parameters. Brachytherapy 2022; 21:904-911. [PMID: 35995724 DOI: 10.1016/j.brachy.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/01/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE To estimate ocular geometry-related inaccuracies of the dosimetric plan in Ru-106 ophthalmic brachytherapy. METHODS AND MATERIALS Thirty patients with intraocular lesions were treated with brachytherapy using a Ru-106 plaque-shell of inner radius of 12 mm. Magnetic resonance imaging was employed to determine the external scleral radius at tumor site and the tumor margins. A mathematical model was developed to determine the distance between the external sclera and the internal surface of the plaque associated with the tangential application of the plaque on the treated eye. Differences in delivered dose to the tumor apex, sclera and tumor margins as derived by considering the default eye-globe of standard size (external sclera radius = 12 mm) against the individual-specific eye globe were determined. RESULTS The radius of external sclera at the tumor site was found to range between 10.90 and 13.05 mm for the patient cohort studied. When the patient specific eye-globe/tumor geometry is not taken into account, the delivered dose was found to be overestimated by 8.1% ± 4.1% (max = 15.3%) at tumor apex, by 1.5% ± 2.8% (max = 5.7%) at anterior tumor margin, by 16.6% ± 7.5% (max = 36.4%) at posterior tumor margin and 8.1% ± 3.8% (max = 13.2%) at central sclera of eyes with lower than the default radius. The corresponding dose overestimations for eyes with higher than the default radius was 13.5% ± 4.3% (max = 22.3%), 1.5% ± 2.8% (max = 5.7%), 12.6% ± 4.5% (max = 20.0%), and 15.1% ± 5.0% (max = 24.4%). CONCLUSIONS The proposed patient-specific approach for Ru-106 brachytherapy treatment planning may improve dosimetric accuracy. Individualized treatment planning dosimetry may prevent undertreatment of intraocular tumors especially for highly myopic or hyperopic eyes.
Collapse
Affiliation(s)
| | - Kostas Perisinakis
- Department of Medical Physics, University of Crete, Medical School, Heraklion, Crete, Greece; Computational BioMedicine Laboratory (CBML), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Greece
| | - Georgia Solomou
- Department of Medical Physics, University of Crete, Medical School, Heraklion, Crete, Greece
| | | | | | | | - Efrosini Papadaki
- Department of Radiology, University Hospital of Heraklion, Crete, Greece
| | - Efstathios T Detorakis
- Department of Ophthalmology, Medical School, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
6
|
Taherparvar P, Fardi Z. Comparison between dose distribution from 103Pd, 131Cs, and 125I plaques in a real human eye model with different tumor size. Appl Radiat Isot 2022; 182:110146. [DOI: 10.1016/j.apradiso.2022.110146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 11/17/2022]
|
7
|
Radiobiological evaluation of organs at risk for electronic high-dose-rate brachytherapy in uveal melanoma: a radiobiological modeling study. J Contemp Brachytherapy 2021; 13:563-574. [PMID: 34759981 PMCID: PMC8565628 DOI: 10.5114/jcb.2021.110349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Purpose The objective of this study was to examine feasibility of single- or hypo-fraction of high-dose-rate (HDR) electronic brachytherapy (eBT) in uveal melanoma treatment. Material and methods Biologically effective doses (BED) of organs at risk (OARs) were compared to those of iodine-125-based eye plaque low-dose-rate brachytherapy (125I LDR-BT) with vitreous replacement (VR). Single- or hypo-fractionated equivalent physical doses (SFEDs or HFEDs) for tumor were calculated from tumor BED of 125I LDR-BT using linear-quadratic (LQ) and universal survival curve (USC) models. BED OARs doses to retina opposite the implant, macula, optic disc, and lens were calculated and compared among SFED, HFED, and 125I LDR-BT. Electronic BT of 50 kVp was considered assuming dose fall-off as clinically equivalent to 125I LDR-BT. All OARs BEDs were analyzed with and without silicone oil VR. Results For a single-fraction incorporating VR, the median/interquartile range of LQ (USC)-based BED doses of the retina opposite the implant, macula, optic disc, and lens were 16%/1.2% (33%/4%), 35%/19.5% (64%/17.7%), 37%/19% (75%/17.8%), and 27%/7.9% (68%/23.2%) of those for 125I LDR-BT, respectively. SFED tumor values were 29.8/0.2 Gy and 51.7/0.5 Gy when using LQ and USC models, respectively, which could be delivered within 1 hour. SFED can be delivered within 1 hour using a high-dose-rate eBT. Even four-fraction delivery of HFED without VR resulted in higher OARs doses in the macula, optic disc, and lens (135 ~ 159%) than when using 125I LDR-BT technique. A maximum p-value of 0.005 was observed for these distributions. Conclusions The simulation of single-fraction eBT, including vitreous replacement, resulted in significantly reduced OARs doses (16 ~ 75%) of that achieved with 125I LDR-BT.
Collapse
|
8
|
Puvanasunthararajah S, Fontanarosa D, Wille M, Camps SM. The application of metal artifact reduction methods on computed tomography scans for radiotherapy applications: A literature review. J Appl Clin Med Phys 2021; 22:198-223. [PMID: 33938608 PMCID: PMC8200502 DOI: 10.1002/acm2.13255] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/21/2021] [Accepted: 03/30/2021] [Indexed: 12/22/2022] Open
Abstract
Metal artifact reduction (MAR) methods are used to reduce artifacts from metals or metal components in computed tomography (CT). In radiotherapy (RT), CT is the most used imaging modality for planning, whose quality is often affected by metal artifacts. The aim of this study is to systematically review the impact of MAR methods on CT Hounsfield Unit values, contouring of regions of interest, and dose calculation for RT applications. This systematic review is performed in accordance with the PRISMA guidelines; the PubMed and Web of Science databases were searched using the main keywords "metal artifact reduction", "computed tomography" and "radiotherapy". A total of 382 publications were identified, of which 40 (including one review article) met the inclusion criteria and were included in this review. The selected publications (except for the review article) were grouped into two main categories: commercial MAR methods and research-based MAR methods. Conclusion: The application of MAR methods on CT scans can improve treatment planning quality in RT. However, none of the investigated or proposed MAR methods was completely satisfactory for RT applications because of limitations such as the introduction of other errors (e.g., other artifacts) or image quality degradation (e.g., blurring), and further research is still necessary to overcome these challenges.
Collapse
Affiliation(s)
- Sathyathas Puvanasunthararajah
- School of Clinical SciencesQueensland University of TechnologyBrisbaneQLDAustralia
- Centre for Biomedical TechnologiesQueensland University of TechnologyBrisbaneQLDAustralia
| | - Davide Fontanarosa
- School of Clinical SciencesQueensland University of TechnologyBrisbaneQLDAustralia
- Centre for Biomedical TechnologiesQueensland University of TechnologyBrisbaneQLDAustralia
| | - Marie‐Luise Wille
- Centre for Biomedical TechnologiesQueensland University of TechnologyBrisbaneQLDAustralia
- School of MechanicalMedical & Process EngineeringFaculty of EngineeringQueensland University of TechnologyBrisbaneQLDAustralia
- ARC ITTC for Multiscale 3D Imaging, Modelling, and ManufacturingQueensland University of TechnologyBrisbaneQLDAustralia
| | | |
Collapse
|
9
|
Deufel CL, McCauley Cutsinger S, Corbin KS, Dalvin LA, Petersen IA. EyeDose: An open-source tool for using published Monte Carlo results to estimate the radiation dose delivered to the tumor and critical ocular structures for 125I Collaborative Ocular Melanoma Study eye plaques. Brachytherapy 2020; 20:189-199. [PMID: 33187821 DOI: 10.1016/j.brachy.2020.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/07/2020] [Accepted: 09/11/2020] [Indexed: 11/24/2022]
Abstract
PURPOSE Radiation side effects and visual outcome for uveal melanoma patients managed with plaque radiotherapy are dependent on the radiation dose administered to the tumor and nearby healthy tissues. We have developed an open-source software tool, EyeDose, to simplify and standardize tumor and critical structure dose reporting for Collaborative Ocular Melanoma Study eye plaques. METHODS AND MATERIALS EyeDose is a MATLAB-based program that calculates point dose and volume dose metrics for standard models of the tumor and critical ocular structures. It uses published three-dimensional dose distributions for eye plaques, calculated with Monte Carlo methods, which are oriented with respect to the eye using the tumor's position on a fundus diagram. A standard model for the ocular structures was created using published measurements and patient CT scans. EyeDose reports radiation statistics for the fovea, optic disc, lens, lacrimal gland, retina, and tumor. The dosimetric margin for implant placement uncertainty is also calculated. RESULTS EyeDose calculations were validated against previously published Monte Carlo results for eight different tumor positions, including the dose to the fovea, optic disc, lacrimal gland, lens, and along the central axis. EyeDose accepts a spreadsheet input for rapidly processing large retrospective patient data sets, with an average run time of <40 s per patient. EyeDose is published as an open-source tool for easy adaptation at different institutions. CONCLUSIONS EyeDose calculates radiation statistics for Collaborative Ocular Melanoma Study eye plaque patients with Monte Carlo accuracy and without a treatment planning system. EyeDose streamlines data collection for large retrospective studies and can also be used prospectively to assess plaque applicability.
Collapse
Affiliation(s)
| | | | | | | | - Ivy A Petersen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN
| |
Collapse
|
10
|
Koike Y, Anetai Y, Takegawa H, Ohira S, Nakamura S, Tanigawa N. Deep learning-based metal artifact reduction using cycle-consistent adversarial network for intensity-modulated head and neck radiation therapy treatment planning. Phys Med 2020; 78:8-14. [DOI: 10.1016/j.ejmp.2020.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 01/27/2023] Open
|
11
|
Itta F, Liuzzi R, Farella A, Porri G, Pacelli R, Conson M, Oliviero C, Buonanno F, Breve M, Cennamo G, Clemente S, Cella L. Personalized treatment planning in eye brachytherapy for ocular melanoma: Dosimetric analysis on ophthalmic structure at risk. Phys Med 2020; 76:285-293. [DOI: 10.1016/j.ejmp.2020.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022] Open
|
12
|
Le BHA, Kim JW, Deng H, Rayess N, Jennelle RL, Zhou SY, Astrahan MA, Berry JL. Outcomes of choroidal melanomas treated with eye physics plaques: A 25-year review. Brachytherapy 2018; 17:981-989. [PMID: 30082188 DOI: 10.1016/j.brachy.2018.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE To review long-term outcomes of the University of Southern California Plaque Simulator (PS) software and Eye Physics (EP) plaques. We hypothesize that the PS/EP system delivers lower doses to critical ocular structures, resulting in lower rates of radiation toxicity and favorable visual outcomes compared to Collaborative Ocular Melanoma Study plaques, while maintaining adequate local tumor control. METHODS AND MATERIALS Retrospective review of 133 patients treated for choroidal melanoma with 125I brachytherapy, using PS software and EP plaques, from 1990 through 2015. A dose of 85 Gy at a rate of 0.6 Gy/h was prescribed to the tumor apex (with a typical margin of 2 mm) over 7 days. Primary outcomes were local tumor recurrence, globe salvage, and metastasis. Secondary outcomes were changes in visual acuity and radiation complications. RESULTS With median followup of 42 months, 5-year Kaplan-Meier estimated rates for tumor control, globe salvage, and metastatic-free survival were 98.3%, 96.4%, and 88.2%, respectively. Median doses to the macula and optic nerve were 39.9 Gy and 30.0 Gy, respectively. Forty-three percent of patients developed radiation retinopathy, and 20% developed optic neuropathy; 39% lost ≥6 Snellen lines of vision. CONCLUSIONS The PS/EP system is designed to improve the accuracy and conformality of the radiation dose, creating a steep dose gradient outside the melanoma to decrease radiation to surrounding ocular structures. We report favorable rates of local tumor control, globe salvage, metastases, and radiation complications when compared to the Collaborative Ocular Melanoma Study and other studies. Overall, the PS/EP system results in excellent tumor control and appears to optimize long-term visual and radiation-related outcomes after brachytherapy.
Collapse
Affiliation(s)
- Bao Han A Le
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA; John A. Burns School of Medicine at the University of Hawaii, Honolulu, HI
| | - Jonathan W Kim
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA; The Vision Center at Children's Hospital Los Angeles, Los Angeles, CA
| | - Hao Deng
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA
| | - Nadim Rayess
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA
| | - Richard L Jennelle
- Department of Radiation Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA
| | - Sue Y Zhou
- Department of Radiation Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA
| | - Melvin A Astrahan
- Department of Radiation Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA
| | - Jesse L Berry
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA; The Vision Center at Children's Hospital Los Angeles, Los Angeles, CA.
| |
Collapse
|
13
|
Bilateral episcleral brachytherapy in simultaneous choroidal melanoma and circumscribed hemangioma. J Contemp Brachytherapy 2014; 5:250-7. [PMID: 24474976 PMCID: PMC3899632 DOI: 10.5114/jcb.2013.38523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 08/29/2013] [Accepted: 12/31/2013] [Indexed: 12/11/2022] Open
Abstract
Purpose To describe the efficacy of episcleral brachytherapy in a choroidal melanoma and circumscribed hemangioma arising in both eyes of the same patient. Case report We present the case of a 47 year old man who presented decreased visual acuity a few months preceding initial consult. On fundoscopy, he presented a melanotic lesion in the right eye, and a red-orange choroidal mass in the macular area of the left eye. Material and methods B scan-ultrasound, fluorescein, and indocyanine green angiography, confirmed the diagnosis of choroidal melanoma in the right eye, and circumscribed choroidal hemangioma in the left eye. Episcleral brachytherapy with 125I was performed in both eyes consecutively. Results and Conclusions Bilateral episcleral brachytherapy successfully treated both tumors, preserving the eyes and useful visual function.
Collapse
|