1
|
Dooka BD, Orish CN, Ezejiofor AN, Umeji TC, Nkpaa KW, Okereke I, Cirovic A, Cirovic A, Orisakwe OE. Rice bran extract ameliorate heavy metal mixture induced hippocampal toxicity via inhibiting oxido-inflammatory damages and modulating Hmox-1/BDNF/Occludin/Aβ40/Aβ42 in rats. Toxicol Res (Camb) 2025; 14:tfaf049. [PMID: 40201631 PMCID: PMC11975361 DOI: 10.1093/toxres/tfaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 04/10/2025] Open
Abstract
The hippocampus executes the integration of memory and spatial learning information. This study evaluated the effect of rice bran extract (RBE) on heavy metal mixture (MM) induced hippocampal toxicity and its underlying mechanism in albino rats. Thirty five rats were exposed to MM alone at Pb 20 mg/kg, Al 35 mg/kg, and Mn 0.564 mg/kg body weight or co-exposed with RBE at 125, 250 and 500 mg/kg body weight, 125 RBE mg/kg b.wt only, and 500 RBE mg/kg b.wt only 5 days a wk for 13 wk (90 days). Subsequently, oxidative stress, inflammation (cyclooxygenase-2) and caspase-3, amyloid precursor proteins (Aβ40 and Aβ42), HMOX-1, occludin and BDNF and transcription factor Nrf-2 in the hippocampus were investigated. MM treatment resulted in significantly higher escape latency time than both the control and MM plus RBE group. MM exposure induced increased oxidative stress, inflammation resulting in enhanced hippocampal apoptosis. MM significantly increased bioaccumulation of Pb, Al, and Pb; increased caspase-3, Nrf-2, Aβ40 and Aβ42 and significantly decreased occludin, BDNF, HMOX-1 when compared with the control. All these effects were reversed by RBE. Collectively, RBE ameliorated MM - induced oxidative stress, neuro-inflammation and hippocampal apoptosis via attenuation of oxidative damages of cellular constituents, neuronal inflammation and subsequent down regulation of amyloid precursor proteins Aβ40, Aβ42 and up regulation of occludin, BDNF, HMOX-1 protein expression via Nrf-2 dependent pathways to abrogate hippocampal toxicity associated with spatial learning and memory deficits.
Collapse
Affiliation(s)
- Baridoo Donatus Dooka
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB 5323, Choba 500102, Port Harcourt, Nigeria
| | - Chinna N Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, PMB, 5323, Choba 500102, Port Harcourt, Nigeria
| | - Anthonet N Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB 5323, Choba 500102, Port Harcourt, Nigeria
| | - Theresa C Umeji
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Madonna University, Elele, Rivers State 500102, Nigeria
| | - Kpobari W Nkpaa
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB 5323, Choba 500102, Port Harcourt, Nigeria
| | - Ifeoma Okereke
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB 5323, Choba 500102, Port Harcourt, Nigeria
| | - Ana Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade 101801, Serbia
| | - Aleksandar Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade 101801, Serbia
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB 5323, Choba 500102, Port Harcourt, Nigeria
- Advanced Research Centre, European University of Lefke, Lefke, Northern Cyprus, Mersin TR-10, Turkey
| |
Collapse
|
2
|
Khophai S, Chockchaisiri S, Talabnin K, Ketudat Cairns JR, Talabnin C. Black rice bran‑derived anthocyanins attenuate cholangiocarcinoma cell migration via the alteration of epithelial‑mesenchymal transition and sialylation. Biomed Rep 2025; 22:28. [PMID: 39720294 PMCID: PMC11668138 DOI: 10.3892/br.2024.1906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/04/2024] [Indexed: 12/26/2024] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive cancer of the bile duct epithelium. Anthocyanins are water-soluble flavonoids that contribute to the color of fruits and pigmented rice. Black rice bran is rich in anthocyanin pigments and exhibits certain health benefits, including anticancer activity; however, the effect of black rice bran-derived anthocyanins (BBR-M-10) on CCA progression remains unclear. The present study assessed the cytotoxic effects of BBR-M-10 using a Sulforhodamine B assay. The metastatic properties of BBR-M-10 on CCA cell lines were investigated using wound healing, Transwell in vitro migration and invasion assays. The underlying mechanisms of BBR-M-10 bioactivity were examined by quantitative PCR and western blotting. Glycosylation changes were determined by lectin cytochemistry and flow cytometry. The present study demonstrated that BBR-M-10 was not toxic to CCA cell lines, but BBR-M-10 attenuated CCA cell migration and invasion, as evidenced by the increased expression levels of epithelial markers (F-actin and claudin-1), decreased expression levels of mesenchymal markers (vimentin) and a decrease in the activation and phosphorylation of AKT in BBR-M-10-treated CCA cell lines. In addition, aberrant glycosylation was observed in BBR-M-10-treated CCA cell lines, as evidenced by the low expression level of surface Sambucus Nigra lectin-binding α2,6-sialylated glycans and the reduction of α2,6 sialyltransferase gene expression levels after BBR-M-10 treatment in CCA cell lines. These findings suggested that black rice bran-derived anthocyanins could potentially be used as anti-metastatic agents against CCA.
Collapse
Affiliation(s)
- Sasikamon Khophai
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Suwadee Chockchaisiri
- College of Allied Health Sciences, Suan Sunandha Rajabhat University, Samut Songkhram 75000, Thailand
| | - Krajang Talabnin
- School of Pathology, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - James R. Ketudat Cairns
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chutima Talabnin
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
3
|
Oumeddour DZ, Al-Dalali S, Zhao L, Zhao L, Wang C. Recent advances on cyanidin-3-O-glucoside in preventing obesity-related metabolic disorders: A comprehensive review. Biochem Biophys Res Commun 2024; 729:150344. [PMID: 38976946 DOI: 10.1016/j.bbrc.2024.150344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Anthocyanins, found in various pigmented plants as secondary metabolites, represent a class of dietary polyphenols known for their bioactive properties, demonstrating health-promoting effects against several chronic diseases. Among these, cyanidin-3-O-glucoside (C3G) is one of the most prevalent types of anthocyanins. Upon consumption, C3G undergoes phases I and II metabolism by oral epithelial cells, absorption in the gastric epithelium, and gut transformation (phase II & microbial metabolism), with limited amounts reaching the bloodstream. Obesity, characterized by excessive body fat accumulation, is a global health concern associated with heightened risks of disability, illness, and mortality. This comprehensive review delves into the biodegradation and absorption dynamics of C3G within the gastrointestinal tract. It meticulously examines the latest research findings, drawn from in vitro and in vivo models, presenting evidence underlining C3G's bioactivity. Notably, C3G has demonstrated significant efficacy in combating obesity, by regulating lipid metabolism, specifically decreasing lipid synthesis, increasing fatty acid oxidation, and reducing lipid accumulation. Additionally, C3G enhances energy homeostasis by boosting energy expenditure, promoting the activity of brown adipose tissue, and stimulating mitochondrial biogenesis. Furthermore, C3G shows potential in managing various prevalent obesity-related conditions. These include cardiovascular diseases (CVD) and hypertension through the suppression of reactive oxygen species (ROS) production, enhancement of endogenous antioxidant enzyme levels, and inhibition of the nuclear factor-kappa B (NF-κB) signaling pathway and by exercising its cardioprotective and vascular effects by decreasing pulmonary artery thickness and systolic pressure which enhances vascular relaxation and angiogenesis. Type 2 diabetes mellitus (T2DM) and insulin resistance (IR) are also managed by reducing gluconeogenesis via AMPK pathway activation, promoting autophagy, protecting pancreatic β-cells from oxidative stress and enhancing glucose-stimulated insulin secretion. Additionally, C3G improves insulin sensitivity by upregulating GLUT-1 and GLUT-4 expression and regulating the PI3K/Akt pathway. C3G exhibits anti-inflammatory properties by inhibiting the NF-κB pathway, reducing pro-inflammatory cytokines, and shifting macrophage polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. C3G demonstrates antioxidative effects by enhancing the expression of antioxidant enzymes, reducing ROS production, and activating the Nrf2/AMPK signaling pathway. Moreover, these mechanisms also contribute to attenuating inflammatory bowel disease and regulating gut microbiota by decreasing Firmicutes and increasing Bacteroidetes abundance, restoring colon length, and reducing levels of inflammatory cytokines. The therapeutic potential of C3G extends beyond metabolic disorders; it has also been found effective in managing specific cancer types and neurodegenerative disorders. The findings of this research can provide an important reference for future investigations that seek to improve human health through the use of naturally occurring bioactive compounds.
Collapse
Affiliation(s)
- Dounya Zad Oumeddour
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| | - Sam Al-Dalali
- School of Food and Health, Guilin Tourism University, Guilin, 541006, China; Department of Food Science and Technology, Faculty of Agriculture and Food Science, Ibb University, Ibb, 70270, Yemen.
| | - Liang Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| | - Lei Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| | - Chengtao Wang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
4
|
Chen T, Xie L, Wang G, Jiao J, Zhao J, Yu Q, Chen Y, Shen M, Wen H, Ou X, Xie J. Anthocyanins-natural pigment of colored rice bran: Composition and biological activities. Food Res Int 2024; 175:113722. [PMID: 38129038 DOI: 10.1016/j.foodres.2023.113722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Rice by-products are a potential source of various bioactive substances with great processing potential, which are receiving increasing attention. Among them, rice bran is a by-product of rice milling, with high nutritional value and health benefits. Colored rice bran contains a large amount of anthocyanins responsible for color and bioactivities. And anthocyanins are often added to foods as a natural pigment, serving to enhance both the visual appeal and nutritional value. Recent advances in the composition and bioactivities of four common colored rice bran anthocyanins (black, purple, red, and purple red rice) are reviewed in this paper. Rice bran anthocyanins have been confirmed to exhibit biological potential for human health, with their main biological activities being antioxidant, anti-atherosclerosis, anti-cancer, neuroprotective, retinoprotective, immunomodulatory, anti-aging and anti-obesity effects. The structure of anthocyanins determines their biological activities. The anthocyanins composition of rice bran with different colors varied greatly, while that of rice bran with the same color is also slightly different, which is attributed to the rice varieties, growing environment and cropping conditions. However, it remains necessary to conduct further clinical studies to support the health activities of anthocyanins. The present review provides information value for the further development and comprehensive utilization of rice bran anthocyanins.
Collapse
Affiliation(s)
- Ting Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Liuming Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jilan Jiao
- Affiliated Stomatological Hospital of Nanchang University, Nanchang 330006, China
| | - Junwei Zhao
- Affiliated Stomatological Hospital of Nanchang University, Nanchang 330006, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Huiliang Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xiaoyan Ou
- Affiliated Stomatological Hospital of Nanchang University, Nanchang 330006, China.
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
5
|
Fragoso-Medina JA, López Vaquera SR, Domínguez-Uscanga A, Luna-Vital D, García N. Single anthocyanins effectiveness modulating inflammation markers in obesity: dosage and matrix composition analysis. Front Nutr 2023; 10:1255518. [PMID: 38024376 PMCID: PMC10651755 DOI: 10.3389/fnut.2023.1255518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Anthocyanins (ACNs) are phytochemicals with numerous bioactivities, e.g., antioxidant and anti-inflammatory. Health benefits from consuming ACN-rich foods, extracts, and supplements have been studied in clinical trials (CT). However, the individual effect of single ACNs and their correlation with doses and specific bioactivities or molecular targets have not been thoroughly analyzed. This review shows a recompilation of single anthocyanins composition and concentrations used in CT, conducted to investigate the effect of these anti-inflammatory derivatives in obese condition. Single anthocyanin doses with changes in the levels of frequently monitored markers were correlated. In addition, the analysis was complemented with reports of studies made in vitro with single ACNs. Anthocyanins' efficacy in diseases with high baseline obesity-related inflammation markers was evidenced. A poor correlation was found between most single anthocyanin doses and level changes of commonly monitored markers. Correlations between cyanidin, delphinidin, and pelargonidin derivatives and specific molecular targets were proposed. Our analysis showed that knowledge of specific compositions and anthocyanin concentrations determined in future studies would provide more information about mechanisms of action.
Collapse
Affiliation(s)
- Jorge Alberto Fragoso-Medina
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | - Selma Romina López Vaquera
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | - Astrid Domínguez-Uscanga
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | - Diego Luna-Vital
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | - Noemí García
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
- Preclinical Research Unit, Tecnologico de Monterrey, Monterrey, Mexico
| |
Collapse
|
6
|
Leenutaphong P, Tancharoen S, Kikuchi K, Nararatwanchai T, Phruksaniyom C, Chaichalotornkul S. Downregulation of Tumor Promotor Genes in Oryza Sativa Linn.-Induced Antiproliferative Activity of Human Squamous Carcinoma Cells. Asian Pac J Cancer Prev 2023; 24:2431-2438. [PMID: 37505777 PMCID: PMC10676469 DOI: 10.31557/apjcp.2023.24.7.2431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
OBJECTIVES Oral cancer represents the third leading cause of death in Southeast Asia and targeted therapy could prevent or delay disease etymology. Oryza sativa Linn. (OS) extract has been implicated as an antitumor agent in many cancer types, however none has been investigated in human squamous carcinoma-2 (HSC-2) cells, thus we aim to investigate the effects of OS on HSC-2 cells. METHODS Our study investigated the growth inhibitory effects of an ethanolic extract of OS on HSC-2 cells by BrdU ELISA and MTT assays, as well as changes in tumor promoter genes using RT-qPCR and western blotting. RESULTS We found that OS was able to induce cell cytotoxicity and inhibit HSC-2 proliferation. OS also decreased the expression of genes involved in the TGF-β/Smads signaling pathway and genes involved in cell motility such as GPNMB, ITGB6, and E2F1 by RT-qPCR. Western blotting confirmed the downregulation of TGF-β1 by OS. Co-treatment of OS and 5-Flurouracil also reversed Snail and Slug overexpression caused by HSC-2 exposure to 5-Flurouracil. CONCLUSION Together, these results indicate that OS can inhibit HSC-2 cell proliferation and this may involve TGF-β1 downregulation. Thus, this study shows OS could be useful for the treatment of patients with squamous carcinoma.
Collapse
Affiliation(s)
| | - Salunya Tancharoen
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand.
| | - Kiyoshi Kikuchi
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, Japan.
| | | | - Chareerut Phruksaniyom
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand.
| | | |
Collapse
|
7
|
Bennett C, Funsueb S, Kittiwachana S, Sookwong P, Mahatheeranont S. Mineral elements and their relation to anthocyanin content in pigmented rice plants using definitive screening design and self-organizing maps. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4535-4544. [PMID: 36856263 DOI: 10.1002/jsfa.12534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 01/17/2023] [Accepted: 03/01/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Mineral elements are nutrients required by an organism to perform functions necessary for survival. Stress-induced metabolism following nutritional stress has been reported to increase levels of anthocyanin. However, the role of mineral elements commonly found in soil and their contribution to the accumulation of anthocyanin content in rice plants is uncertain. RESULT Amongst the ten mineral elements investigated, the cultivation of rice plants in clean sand showed that the Mg-, Se-, and Cu-treated plants had the highest accumulated anthocyanin content in the leaves, whereas B, Cr, and Se had the greatest effect on grains. Yield component data showed major positive effects from Mg, Cr, and B. The interaction of Zn*Se and Mg*Cu positively affected the anthocyanin content in grains. The self-organizing map indicated that the total anthocyanin content was relatively proportional to the concentration of Mn, B, and Cr, but disproportional to that of Se. However, rice plants with added Fe produced the smallest amount of total anthocyanin content, less than the control, in the four stages of rice growth. CONCLUSION The appropriate concentrations of mineral elements in soil could promote the proliferation of anthocyanin content in rice plants and grains. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chonlada Bennett
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Sujitra Funsueb
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Sila Kittiwachana
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Phumon Sookwong
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai, Thailand
| | - Sugunya Mahatheeranont
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
8
|
Tan BL, Norhaizan ME, Chan LC. Rice Bran: From Waste to Nutritious Food Ingredients. Nutrients 2023; 15:nu15112503. [PMID: 37299466 DOI: 10.3390/nu15112503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Rice (Oryza sativa L.) is a principal food for more than half of the world's people. Rice is predominantly consumed as white rice, a refined grain that is produced during the rice milling process which removes the bran and germ and leaves the starchy endosperm. Rice bran is a by-product produced from the rice milling process, which contains many bioactive compounds, for instance, phenolic compounds, tocotrienols, tocopherols, and γ-oryzanol. These bioactive compounds are thought to protect against cancer, vascular disease, and type 2 diabetes. Extraction of rice bran oil also generates various by-products including rice bran wax, defatted rice bran, filtered cake, and rice acid oil, and some of them exert bioactive substances that could be utilized as functional food ingredients. However, rice bran is often utilized as animal feed or discarded as waste. Therefore, this review aimed to discuss the role of rice bran in metabolic ailments. The bioactive constituents and food product application of rice bran were also highlighted in this study. Collectively, a better understanding of the underlying molecular mechanism and the role of these bioactive compounds exerted in the rice bran would provide a useful approach for the food industry and prevent metabolic ailments.
Collapse
Affiliation(s)
- Bee Ling Tan
- Department of Healthcare Professional, Faculty of Health and Life Sciences, Management and Science University, University Drive, Off Persiaran Olahraga, Seksyen 13, 40100 Shah Alam, Selangor, Malaysia
| | - Mohd Esa Norhaizan
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra, Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Lee Chin Chan
- Biovalence Sdn. Bhd., 22, Jalan SS25/34, Taman Mayang, 47301 Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
9
|
Hao Q, Wu Y, Vadgama JV, Wang P. Phytochemicals in Inhibition of Prostate Cancer: Evidence from Molecular Mechanisms Studies. Biomolecules 2022; 12:1306. [PMID: 36139145 PMCID: PMC9496067 DOI: 10.3390/biom12091306] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
Prostate cancer is one of the leading causes of death for men worldwide. The development of resistance, toxicity, and side effects of conventional therapies have made prostate cancer treatment become more intensive and aggressive. Many phytochemicals isolated from plants have shown to be tumor cytotoxic. In vitro laboratory studies have revealed that natural compounds can affect cancer cell proliferation by modulating many crucial cellular signaling pathways frequently dysregulated in prostate cancer. A multitude of natural compounds have been found to induce cell cycle arrest, promote apoptosis, inhibit cancer cell growth, and suppress angiogenesis. In addition, combinatorial use of natural compounds with hormone and/or chemotherapeutic drugs seems to be a promising strategy to enhance the therapeutic effect in a less toxic manner, as suggested by pre-clinical studies. In this context, we systematically reviewed the currently available literature of naturally occurring compounds isolated from vegetables, fruits, teas, and herbs, with their relevant mechanisms of action in prostate cancer. As there is increasing data on how phytochemicals interfere with diverse molecular pathways in prostate cancer, this review discusses and emphasizes the implicated molecular pathways of cell proliferation, cell cycle control, apoptosis, and autophagy as important processes that control tumor angiogenesis, invasion, and metastasis. In conclusion, the elucidation of the natural compounds' chemical structure-based anti-cancer mechanisms will facilitate drug development and the optimization of drug combinations. Phytochemicals, as anti-cancer agents in the treatment of prostate cancer, can have significant health benefits for humans.
Collapse
Affiliation(s)
- Qiongyu Hao
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Yanyuan Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Jaydutt V. Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Piwen Wang
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| |
Collapse
|
10
|
Insight into the Progress on Natural Dyes: Sources, Structural Features, Health Effects, Challenges, and Potential. Molecules 2022; 27:molecules27103291. [PMID: 35630767 PMCID: PMC9144664 DOI: 10.3390/molecules27103291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Dyes play an important role in food, medicine, textile, and other industries, which make human life more colorful. With the increasing demand for food safety, the development of natural dyes becomes more and more attractive. (2) Methods: The literature was searched using the electronic databases PubMed, Web of Science, and SciFinder and this scoping review was carried out following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). (3) Results: 248 articles were included in this review. This review summarizes the research progress on natural dyes in the last ten years. According to structural features, natural dyes mainly include carotenoids, polyphenols, porphyrins, and alkaloids, and some of the newest dyes are summarized. Some pharmacological activities of carotenoids, anthocyanin, curcumin, and betalains in the last 10 years are summarized, and the biological effects of dyes regarding illumination conditions. The disadvantages of natural dyes, including sources, cost, stability, and poor bioavailability, limit their application. Here, some feasible strategies (potential resources, biotechnology, new extraction and separation strategies, strategies for improving stability) are described, which will contribute to the development and utilization of natural dyes. (4) Conclusion: Natural dyes show health benefits and potential in food additives. However, it is necessary for natural dyes to pass toxicity tests and quality tests and receive many regulatory approvals before their final entry into the market as food colorants or as drugs.
Collapse
|
11
|
Mottaghipisheh J, Doustimotlagh AH, Irajie C, Tanideh N, Barzegar A, Iraji A. The Promising Therapeutic and Preventive Properties of Anthocyanidins/Anthocyanins on Prostate Cancer. Cells 2022; 11:1070. [PMID: 35406634 PMCID: PMC8997497 DOI: 10.3390/cells11071070] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 12/12/2022] Open
Abstract
As water-soluble flavonoid derivatives, anthocyanidins and anthocyanins are the plants pigments mostly rich in berries, pomegranate, grapes, and dark color fruits. Many bioactivity properties of these advantageous phytochemicals have been reported; among them, their significant abilities in the suppression of tumor cells are of the promising therapeutic features, which have recently attracted great attention. The prostate malignancy, is considered the 2nd fatal and the most distributed cancer type in men worldwide. The present study was designated to gather the preclinical and clinical studies evaluating potencies of anthocyanidins/anthocyanins for the treatment and prevention of this cancer type for the first time. In general, findings confirm that the anthocyanins (especifically cyanidin-3-O-glucoside) indicated higher activity against prostatic neoplasms compared to their correlated anthocyanidins (e.g., delphinidin); in which potent anti-inflammatory, apoptosis, and anti-proliferative activities were analyzed. Complementary anti-prostate cancer assessment of diverse naturally occurred anthocyanidins/anthocyanins and their synthetically optimized derivatives through preclinical experiments and eventually confirmed by clinical trials can promisingly lead to discover natural-based chemotherapeutic drug options.
Collapse
Affiliation(s)
- Javad Mottaghipisheh
- Center for Molecular Biosciences (CMBI), Institute of Pharmacy/Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Amir Hossein Doustimotlagh
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj 75918-67319, Iran;
- Department of Clinical Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj 75918-67319, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
| | - Alireza Barzegar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
- Liosa Pharmed Parseh Company, Shiraz 71997-47118, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| |
Collapse
|
12
|
Bai B, Chen Q, Jing R, He X, Wang H, Ban Y, Ye Q, Xu W, Zheng C. Molecular Basis of Prostate Cancer and Natural Products as Potential Chemotherapeutic and Chemopreventive Agents. Front Pharmacol 2021; 12:738235. [PMID: 34630112 PMCID: PMC8495205 DOI: 10.3389/fphar.2021.738235] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is the second most common malignant cancer in males. It involves a complex process driven by diverse molecular pathways that closely related to the survival, apoptosis, metabolic and metastatic characteristics of aggressive cancer. Prostate cancer can be categorized into androgen dependent prostate cancer and castration-resistant prostate cancer and cure remains elusive due to the developed resistance of the disease. Natural compounds represent an extraordinary resource of structural scaffolds with high diversity that can offer promising chemical agents for making prostate cancer less devastating and curable. Herein, those natural compounds of different origins and structures with potential cytotoxicity and/or in vivo anti-tumor activities against prostate cancer are critically reviewed and summarized according to the cellular signaling pathways they interfere. Moreover, the anti-prostate cancer efficacy of many nutrients, medicinal plant extracts and Chinese medical formulations were presented, and the future prospects for the application of these compounds and extracts were discussed. Although the failure of conventional chemotherapy as well as involved serious side effects makes natural products ideal candidates for the treatment of prostate cancer, more investigations of preclinical and even clinical studies are necessary to make use of these medical substances reasonably. Therefore, the elucidation of structure-activity relationship and precise mechanism of action, identification of novel potential molecular targets, and optimization of drug combination are essential in natural medicine research and development.
Collapse
Affiliation(s)
- Bingke Bai
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Qianbo Chen
- Department of Anesthesiology, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Rui Jing
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xuhui He
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Hongrui Wang
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yanfei Ban
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Qi Ye
- Department of Biological Science, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weiheng Xu
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Chengjian Zheng
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
13
|
Comparative Transcriptome Analysis of the Expression of Antioxidant and Immunity Genes in the Spleen of a Cyanidin 3-O-Glucoside-Treated Alzheimer's Mouse Model. Antioxidants (Basel) 2021; 10:antiox10091435. [PMID: 34573067 PMCID: PMC8472539 DOI: 10.3390/antiox10091435] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Cyanidin 3-O-glucoside (C3G) is a well-known antioxidant found as a dietary anthocyanin in different fruits and vegetables. It has protective and therapeutic effects on various diseases. It can reduce neuronal death from amyloid-beta (Aβ)-induced toxicity and promote the inhibition of Aβ fibrillization. Antioxidant and immune modulation might play a critical role in the properties of C3G against Alzheimer's disease (AD) and other diseases. However, limited studies have been performed on the mechanism involved in the effect of C3G through transcriptome analysis. Thus, the objective of this study was to perform comparative transcriptome analysis of the spleen to determine gene expression profiles of wild-type mice (C57BL/6J Jms), an Alzheimer's mouse model (APPswe/PS1dE9 mice), and a C3G-treated Alzheimer's mouse model. Differentially expressed antioxidant, immune-related, and AD pathways genes were identified in the treated group. The validation of gene expression data via RT-PCR studies further supported the current findings. Six important antioxidant genes (S100a8, S100a9, Prdx2, Hp, Mpst, and Prxl2a) and a high number of immune-related genes were found to be upregulated in the treatment groups, suggesting the possible antioxidant and immunomodulatory mechanisms of C3G, respectively. Further studies are strongly recommended to elucidate the precise role of these essential genes and optimize the therapeutic function of C3G in AD and other disease conditions.
Collapse
|
14
|
Bennett C, Sookwong P, Jakmunee J, Mahatheeranont S. Smartphone digital image colorimetric determination of the total monomeric anthocyanin content in black rice via the pH differential method. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3348-3358. [PMID: 34286735 DOI: 10.1039/d1ay00719j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this research, the pH differential method was explored for the first time using a mobile phone as a detector, replacing UV-Vis spectrophotometry. A smartphone digital image colorimetric (SDIC) system was developed for the determination of the total monomeric anthocyanin content in black rice grains using colour values. The change in colour of anthocyanin cyanidin-3-glucoside (C3G) at pH 1.0 and pH 4.5 was investigated and described through colour model systems (RGB and CIELAB). Under optimum conditions, the quantitative method based on the chroma difference, was able to quantify the total amount of monomeric anthocyanins with a linear correlation (R2 = 0.989) to that of UV-Vis spectrophotometry and high performance liquid chromatography (HPLC) (reference method). The SDIC system displayed good precision (≤1.88% RSD) and a low detection limit (2.2 ± 0.1 μg g-1). The validated results demonstrated that the developed method was a cost-effective alternative for the quantitation of anthocyanins. In addition, the effect of six mineral elements on black rice cultivation was investigated. The results showed that the addition of the Ca fertiliser resulted in black rice grains with an anthocyanin content 2-fold higher than that of the control with a significant difference (p < 0.05).
Collapse
Affiliation(s)
- Chonlada Bennett
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | | | | | | |
Collapse
|
15
|
Kozłowska A, Dzierżanowski T. Targeting Inflammation by Anthocyanins as the Novel Therapeutic Potential for Chronic Diseases: An Update. Molecules 2021; 26:4380. [PMID: 34299655 PMCID: PMC8304181 DOI: 10.3390/molecules26144380] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Low-grade chronic inflammation (LGCI) and oxidative stress act as cooperative and synergistic partners in the pathogenesis of a wide variety of diseases. Polyphenols, including anthocyanins, are involved in regulating the inflammatory state and activating the endogenous antioxidant defenses. Anthocyanins' effects on inflammatory markers are promising and may have the potential to exert an anti-inflammatory effect in vitro and in vivo. Therefore, translating these research findings into clinical practice would effectively contribute to the prevention and treatment of chronic disease. The present narrative review summarizes the results of clinical studies from the last 5 years in the context of the anti-inflammatory and anti-oxidative role of anthocyanins in both health and disease. There is evidence to indicate that anthocyanins supplementation in the regulation of pro-inflammatory markers among the healthy and chronic disease population. Although the inconsistencies between the result of randomized control trials (RCTs) and meta-analyses were also observed. Regarding anthocyanins' effects on inflammatory markers, there is a need for long-term clinical trials allowing for the quantifiable progression of inflammation. The present review can help clinicians and other health care professionals understand the importance of anthocyanins use in patients with chronic diseases.
Collapse
Affiliation(s)
| | - Tomasz Dzierżanowski
- Department of Social Medicine and Public Health, Medical University of Warsaw, 02-776 Warsaw, Poland;
| |
Collapse
|
16
|
Liu J, Zhou H, Song L, Yang Z, Qiu M, Wang J, Shi S. Anthocyanins: Promising Natural Products with Diverse Pharmacological Activities. Molecules 2021; 26:molecules26133807. [PMID: 34206588 PMCID: PMC8270296 DOI: 10.3390/molecules26133807] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/15/2022] Open
Abstract
Anthocyanins are natural products that give color to plants. As natural plant pigments, anthocyanins also have a series of health-promoting benefits. Many researchers have proved that anthocyanins have therapeutic effects on diseases, such as circulatory, nervous, endocrine, digestive, sensory, urinary and immune systems. Additionally, a large number of studies have reported that anthocyanins have an anticancer effect through a wide range of anti-inflammatory and antioxidant effects. The anti-disease impact and mechanism of anthocyanins are diverse, so they have high research value. This review summarizes the research progress of anthocyanins on the pharmacological agents of different diseases to provide references for subsequent research.
Collapse
Affiliation(s)
- Jiaqi Liu
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.L.); (H.Z.); (M.Q.)
| | - Hongbing Zhou
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.L.); (H.Z.); (M.Q.)
- Institute of Bioactive Substance and Function of Mongolian Medicine and Chinese Materia Medica, Baotou Medical College, Baotou 014060, China; (L.S.); (Z.Y.)
| | - Li Song
- Institute of Bioactive Substance and Function of Mongolian Medicine and Chinese Materia Medica, Baotou Medical College, Baotou 014060, China; (L.S.); (Z.Y.)
| | - Zhanjun Yang
- Institute of Bioactive Substance and Function of Mongolian Medicine and Chinese Materia Medica, Baotou Medical College, Baotou 014060, China; (L.S.); (Z.Y.)
| | - Min Qiu
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.L.); (H.Z.); (M.Q.)
| | - Jia Wang
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.L.); (H.Z.); (M.Q.)
- Correspondence: (J.W.); (S.S.)
| | - Songli Shi
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.L.); (H.Z.); (M.Q.)
- Institute of Bioactive Substance and Function of Mongolian Medicine and Chinese Materia Medica, Baotou Medical College, Baotou 014060, China; (L.S.); (Z.Y.)
- Correspondence: (J.W.); (S.S.)
| |
Collapse
|