1
|
An L, Tang Y, Wang D, Jia S, Pei Q, Wang Q, Yu Z, Liu JK. Intrinsic and Synaptic Properties Shaping Diverse Behaviors of Neural Dynamics. Front Comput Neurosci 2020; 14:26. [PMID: 32372936 PMCID: PMC7187274 DOI: 10.3389/fncom.2020.00026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/18/2020] [Indexed: 12/19/2022] Open
Abstract
The majority of neurons in the neuronal system of the brain have a complex morphological structure, which diversifies the dynamics of neurons. In the granular layer of the cerebellum, there exists a unique cell type, the unipolar brush cell (UBC), that serves as an important relay cell for transferring information from outside mossy fibers to downstream granule cells. The distinguishing feature of the UBC is that it has a simple morphology, with only one short dendritic brush connected to its soma. Based on experimental evidence showing that UBCs exhibit a variety of dynamic behaviors, here we develop two simple models, one with a few detailed ion channels for simulation and the other one as a two-variable dynamical system for theoretical analysis, to characterize the intrinsic dynamics of UBCs. The reasonable values of the key channel parameters of the models can be determined by analysis of the stability of the resting membrane potential and the rebound firing properties of UBCs. Considered together with a large variety of synaptic dynamics installed on UBCs, we show that the simple-structured UBCs, as relay cells, can extend the range of dynamics and information from input mossy fibers to granule cells with low-frequency resonance and transfer stereotyped inputs to diverse amplitudes and phases of the output for downstream granule cells. These results suggest that neuronal computation, embedded within intrinsic ion channels and the diverse synaptic properties of single neurons without sophisticated morphology, can shape a large variety of dynamic behaviors to enhance the computational ability of local neuronal circuits.
Collapse
Affiliation(s)
- Lingling An
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Yuanhong Tang
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Doudou Wang
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Shanshan Jia
- National Engineering Laboratory for Video Technology, Department of Computer Science and Technology, Peking University, Beijing, China
| | - Qingqi Pei
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Quan Wang
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Zhaofei Yu
- National Engineering Laboratory for Video Technology, Department of Computer Science and Technology, Peking University, Beijing, China
| | - Jian K Liu
- Centre for Systems Neuroscience, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
2
|
Scheuer T, Sharkovska Y, Tarabykin V, Marggraf K, Brockmöller V, Bührer C, Endesfelder S, Schmitz T. Neonatal Hyperoxia Perturbs Neuronal Development in the Cerebellum. Mol Neurobiol 2017; 55:3901-3915. [PMID: 28547531 DOI: 10.1007/s12035-017-0612-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/11/2017] [Indexed: 12/22/2022]
Abstract
Impaired postnatal brain development of preterm infants often results in neurological deficits. Besides pathologies of the forebrain, maldeveolopment of the cerebellum is increasingly recognized to contribute to psychomotor impairments of many former preterm infants. However, causes are poorly defined. We used a hyperoxia model to define neonatal damage in cerebellar granule cell precursors (GCPs) and in Purkinje cells (PCs) known to be essential for interaction with GCPs during development. We exposed newborn rats to 24 h 80% O2 from age P6 to P7 to identify postnatal and long-term damage in cerebellar GCPs at age P7 after hyperoxia and also after recovery in room air thereafter until P11 and P30. We determined proliferation and apoptosis of GCPs and immature neurons by immunohistochemistry, quantified neuronal damage by qPCR and Western blots for neuronal markers, and measured dendrite outgrowth of PCs by CALB1 immunostainings and by Sholl analysis of Golgi stainings. After hyperoxia, proliferation of PAX6+ GCPs was decreased at P7, while DCX + CASP3+ cells were increased at P11. Neuronal markers Pax6, Tbr2, and Prox1 were downregulated at P11 and P30. Neuronal damage was confirmed by reduced NeuN protein expression at P30. Sonic hedgehog (SHH) was significantly decreased at P7 and P11 after hyperoxia and coincided with lower CyclinD2 and Hes1 expression at P7. The granule cell injury was accompanied by hampered PC maturation with delayed dendrite formation and impaired branching. Neonatal injury induced by hyperoxia inhibits PC functioning and impairs granule cell development. As a conclusion, maldevelopment of the cerebellar neurons found in preterm infants could be caused by postnatal oxygen toxicity.
Collapse
Affiliation(s)
- Till Scheuer
- Department for Neonatology, Charité University Medical Center, Berlin, Germany. .,Institute of Bioanalytics, Technische Universität Berlin, 13355, Berlin, Germany. .,Klinik für Neonatologie, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Yuliya Sharkovska
- Department for Neonatology, Charité University Medical Center, Berlin, Germany.,Institute for Cell and Neurobiology, Center for Anatomy, Charité University Medical Center, Berlin, Germany
| | - Victor Tarabykin
- Institute for Cell and Neurobiology, Center for Anatomy, Charité University Medical Center, Berlin, Germany
| | - Katharina Marggraf
- Department for Neonatology, Charité University Medical Center, Berlin, Germany
| | - Vivien Brockmöller
- Department for Neonatology, Charité University Medical Center, Berlin, Germany
| | - Christoph Bührer
- Department for Neonatology, Charité University Medical Center, Berlin, Germany
| | | | - Thomas Schmitz
- Department for Neonatology, Charité University Medical Center, Berlin, Germany
| |
Collapse
|