Improved Bone Regeneration With Multiporous PLGA Scaffold and BMP-2-Transduced Human Adipose-Derived Stem Cells by Cell-Permeable Peptide.
IMPLANT DENT 2017;
26:4-11. [PMID:
27893514 DOI:
10.1097/id.0000000000000523]
[Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE
Currently, much work has focused on the engineering of bone using adipose-derived stem cells (ADSCs), which differentiate into osteogenic cells. This study was conducted to assess the bone-regenerating capacity of ADSCs with genetic modification.
MATERIALS AND METHODS
ADSCs were cultured and transduced with recombinant adenovirus-expressing bone morphogenetic protein-2 (rAd/BMP-2). Two 5-mm full-thickness bone defects were created on the parietal bones of 24 rats. The defects were left empty (n = 12), restored with a scaffold alone (n = 12), transplanted with ADSCs in osteogenic media (n = 12), or transplanted with rAd/BMP-2-transduced ADSCs (n = 12). Six defects from each group were assessed by histologic observation, histomorphometric analysis, and microcomputed tomography (micro-CT) imaging at 4 and 8 weeks after transplantation.
RESULTS
Increased new bone formation was observed in the rAd/BMP-2-transduced ADSC groups, compared with the other groups. On micro-CT, significant differences were noted in bone volume-to-tissue volume ratios between rAd/BMP-2-transduced ADSCs group and the other groups at both time points (P < 0.05).
CONCLUSION
The result demonstrates that transferring BMP-2 promotes the osteogenic differentiation of ADSCs and enhances bone regeneration. Under limitation of this study, genetic modification of ADSCs with BMP-2 could be adopted in clinical application.
Collapse