1
|
Elbakary M, Hammad SF, Youseif SH, Soliman HSM. Revealing the diversity of Jojoba-associated fungi using amplicon metagenome approach and assessing the in vitro biocontrol activity of its cultivable community. World J Microbiol Biotechnol 2024; 40:205. [PMID: 38755302 DOI: 10.1007/s11274-024-03986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/13/2024] [Indexed: 05/18/2024]
Abstract
Jojoba shrubs are wild plants cultivated in arid and semiarid lands and characterized by tolerance to drought, salinity, and high temperatures. Fungi associated with such plants may be attributed to the tolerance of host plants against biotic stress in addition to the promotion of plant growth. Previous studies showed the importance of jojoba as jojoba oil in the agricultural field; however, no prior study discussed the role of jojoba-associated fungi (JAF) in reflecting plant health and the possibility of using JAF in biocontrol. Here, the culture-independent and culture-dependent approaches were performed to study the diversity of the jojoba-associated fungi. Then, the cultivable fungi were evaluated for in-vitro antagonistic activity and in vitro plant growth promotion assays. The metagenome analysis revealed the existence of four fungal phyla: Ascomycota, Aphelidiomycota, Basidiomycota, and Mortierellomycota. The phylum Ascomycota was the most common and had the highest relative abundance in soil, root, branch, and fruit samples (59.7%, 50.7%, 49.8%, and 52.4%, respectively). Alternaria was the most abundant genus in aboveground tissues: branch (43.7%) and fruit (32.1%), while the genus Discosia had the highest abundance in the underground samples: soil (24%) and root (30.7%). For the culture-dependent method, a total of 14 fungi were isolated, identified, and screened for their chitinolytic and antagonist activity against three phytopathogenic fungi (Fusarium oxysporum, Alternaria alternata and Rhizoctonia solani) as well as their in vitro plant growth promotion (PGP) activity. Based on ITS sequence analysis, the selected potent isolates were identified as Aspergillus stellatusEJ-JFF3, Aspergillus flavus EJ-JFF4, Stilbocrea sp. EJ-JLF1, Fusarium solani EJ-JRF3, and Amesia atrobrunneaEJ-JSF4. The endophyte strain A. flavus EJ-JFF4 exhibited the highest chitinolytic activity (9 Enzyme Index) and antagonistic potential against Fusarium oxysporum, Alternaria alternata, and Rhizoctonia solani phytopathogens with inhibitory percentages of 72, 70, and 80 respectively. Also, A. flavus EJ-JFF4 had significant multiple PGP properties, including siderophore production (69.3%), phosphate solubilization (95.4 µg ml-1). The greatest production of Indol-3-Acetic Acid was belonged to A. atrobrunnea EJ-JSF4 (114.5 µg ml-1). The analysis of FUNGuild revealed the abundance of symbiotrophs over other trophic modes, and the guild of endophytes was commonly assigned in all samples. For the first time, this study uncovered fungal diversity associated with jojoba plants using a culture-independent approach and in-vitro assessed the roles of cultivable fungal strains in promoting plant growth and biocontrol. The present study indicated the significance of jojoba shrubs as a potential source of diverse fungi with high biocontrol and PGP activities.
Collapse
Affiliation(s)
- Mustafa Elbakary
- Biotechnology Program, Basic and Applied Science Institute, Egypt-Japan University of Science and Technology, Alexandria, 21934, Egypt.
- Department of Nucleic Acids and Protein Structure, Agricultural Research Center, Agricultural Genetic Engineering Research Institute, Giza, 12619, Egypt.
| | - Sherif F Hammad
- Pharm D Program, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, 21934, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Ain-Helwan, Cairo, 11795, Egypt
| | - Sameh H Youseif
- School of Biotechnology, Nile University, Giza, 12677, Egypt.
- Department of Microbial Genetic Resources, Agricultural Research Center (ARC), National Gene Bank, Giza, 12619, Egypt.
| | - Hesham S M Soliman
- Pharm D Program, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, 21934, Egypt
- Pharmacognosy Department, Helwan University, Ain-Helwan, Cairo, 11795, Egypt
| |
Collapse
|
2
|
Lan J, Liu T, Miao L, Pei T, Gan Z, Lin A, Geng H, Zhang P. New insights into endophytic fungi diversity and their potential correlation with polyphyllin levels of Paris polyphylla var. yunnanensis. Can J Microbiol 2023; 69:351-361. [PMID: 37436108 DOI: 10.1139/cjm-2023-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Endophytes confer fitness advantages to host plants. However, the ecological communities of endophytic fungi in the different tissues (rhizomes, stems, and leaves) of Paris polyphylla and the relationship of their endophytic fungi with polyphyllin levels remain unclear. In this study, the community diversity and differences of endophytic fungi in the rhizomes, stems, and leaves of P. polyphylla var. yunnanensis were investigated, and a comprehensively diverse community of endophytic fungi was represented, including 50 genera, 44 families, 30 orders, 12 classes, and 5 phyla. Distributions of endophytic fungi differed greatly across the three tissues, with six genera common to all tissues, and 11, 5, and 4 genera specific to the rhizomes, stems, and leaves, respectively. Seven genera showed a significantly positive correlation to polyphyllin contents, indicating their potential roles in polyphyllin accumulation. This study provides valuable information for further research of the ecological and biological functions of endophytic fungi of P. polyphylla.
Collapse
Affiliation(s)
- Juan Lan
- College of Life Science, South-Central Minzu University, Wuhan 430074, China
| | - Ting Liu
- College of Life Science, South-Central Minzu University, Wuhan 430074, China
| | - Liyun Miao
- College of Basic Medical Sciences, Shanxi University of Traditional Chinese Medicine, Jinzhong 030619, China
| | - Ting Pei
- College of Life Science, South-Central Minzu University, Wuhan 430074, China
| | - Zhe Gan
- College of Life Science, South-Central Minzu University, Wuhan 430074, China
| | - Aihua Lin
- College of Life Science, South-Central Minzu University, Wuhan 430074, China
| | - Hong Geng
- College of Life Science, South-Central Minzu University, Wuhan 430074, China
| | - Peng Zhang
- College of Life Science, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
3
|
Pang B, Yin D, Zhai Y, He A, Qiu L, Liu Q, Ma N, Shen H, Jia Q, Liang Z, Wang D. Diversity of endophytic fungal community in Huperzia serrata from different ecological areas and their correlation with Hup A content. BMC Microbiol 2022; 22:191. [PMID: 35931950 PMCID: PMC9354316 DOI: 10.1186/s12866-022-02605-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022] Open
Abstract
Background Huperzine A (Hup A) has attracted considerable attention as an effective therapeutic candidate drug used to treat Alzheimer’s disease. Whereas, the production of Hup A from wild plants faced a major challenge, which is the wild Huperzia Serrata harbor a low Hup A content, has a long-life cycle, and has a small yield. At present, several reports showed that Hup A is produced by various endophytic fungal strains isolated from H. serrata, thereby providing an alternative method to produce the compound and reduce the consumption of this rare and endangered plant. However, till now, very few comprehensive studies are available on the biological diversity and structural composition of endophytic fungi and the effects of endophytic fungi on the Hup A accumulation in H. serrata. Results In this research, the composition and diversity of fungal communities in H. serrata were deciphered based on high-throughput sequencing technology of fungal internal transcribed spacer regions2 (ITS2). The correlation between endophytic fungal community and Hup A content was also investigated. Results revealed that the richness and the diversity of endophytic fungi in H. serrata was various according to different tissues and different ecological areas. The endophytic fungal communities of H. serrata exhibit species-specific, ecological-specific, and tissue-specific characteristics. There are 6 genera (Ascomycota_unclassified, Cyphellophora, Fungi_unclassified, Sporobolomyces, and Trichomeriaceae_unclassified) were significantly positively correlated with Hup A content in all two areas, whereas, there are 6 genera (Auricularia, Cladophialophora, Cryptococcus, Mortierella, and Mycena) were significantly negatively correlated with Hup A content of in all two areas. Conclusions This study indicated a different composition and diverse endophytic fungal communities in H. serrata from different organs and ecological areas. The current study will provide the realistic basis and theoretical significance for understanding the biological diversity and structural composition of endophytic fungal communities in H. serrata, as well as providing novel insights into the interaction between endophytic fungi and Hup A content.
Collapse
Affiliation(s)
- Bo Pang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Dengpan Yin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Yufeng Zhai
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Anguo He
- Administration of Zhejiang Dapanshan National Nature Reserve, Pan'an, Zhejiang, 322300, China
| | - Linlin Qiu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Qiao Liu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Nan Ma
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Hongjun Shen
- Ningbo Delai Medicinal Material Planting Co, Zhejiang, 315444, Ltd Ningbo, China
| | - Qiaojun Jia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Zongsuo Liang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Dekai Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
4
|
Chu LL, Bae H. Bacterial endophytes from ginseng and their biotechnological application. J Ginseng Res 2022; 46:1-10. [PMID: 35035239 PMCID: PMC8753428 DOI: 10.1016/j.jgr.2021.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/30/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022] Open
Abstract
Ginseng has been well-known as a medicinal plant for thousands of years. Bacterial endophytes ubiquitously colonize the inside tissues of ginseng without any disease symptoms. The identification of bacterial endophytes is conducted through either the internal transcribed spacer region combined with ribosomal sequences or metagenomics. Bacterial endophyte communities differ in their diversity and composition profile, depending on the geographical location, cultivation condition, and tissue, age, and species of ginseng. Bacterial endophytes have a significant effect on the growth of ginseng through indole-3-acetic acid (IAA) and siderophore production, phosphate solubilization, and nitrogen fixation. Moreover, bacterial endophytes can protect ginseng by acting as biocontrol agents. Interestingly, bacterial endophytes isolated from Panax species have the potential to produce ginsenosides and bioactive metabolites, which can be used in the production of food and medicine. The ability of bacterial endophytes to transform major ginsenosides into minor ginsenosides using β-glucosidase is gaining increasing attention as a promising biotechnology. Recently, metabolic engineering has accelerated the possibilities for potential applications of bacterial endophytes in producing beneficial secondary metabolites.
Collapse
Affiliation(s)
- Luan Luong Chu
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi, Viet Nam
- Bioresource Research Center, Phenikaa University, Hanoi, Viet Nam
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
5
|
Tang Z, Qin Y, Chen W, Zhao Z, Lin W, Xiao Y, Chen H, Liu Y, Chen H, Bu T, Li Q, Cai Y, Yao H, Wan Y. Diversity, Chemical Constituents, and Biological Activities of Endophytic Fungi Isolated From Ligusticum chuanxiong Hort. Front Microbiol 2021; 12:771000. [PMID: 34867905 PMCID: PMC8636053 DOI: 10.3389/fmicb.2021.771000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022] Open
Abstract
The objective of this study was to evaluate the diversity of endophytic fungi of different parts of Ligusticum chuanxiong Hort (CX) and further characterize their biological activities and identify chemical compounds produced by these endophytic fungi. A total of 21 endophytic fungi were isolated and identified from CX. Penicillium oxalicum, Simplicillium sp., and Colletotrichum sp. were identified as promising strains by the color reaction. Comparing different organic extracts of the three strains, it was observed that the ethyl acetate extract of Penicillium oxalicum and Simplicillium sp. and the n-butanol extract of Colletotrichum sp. showed significant antioxidant and antibacterial activities. The ethyl acetate extracts of Penicillium oxalicum had outstanding antioxidant and antibacterial effects, and its radical scavenging rates for ABTS and DPPH were 98.43 ± 0.006% and 90.11 ± 0.032%, respectively. At the same time, their IC50 values were only 0.18 ± 0.02 mg/mL and 0.04 ± 0.003 mg/mL. The ethyl acetate extract of Penicillium oxalicum showed MIC value of only 0.5 mg/mL against Escherichia coli and Staphylococcus aureus. By liquid chromatography-mass spectrometry (LC-MS), we found that Penicillium oxalicum could produce many high-value polyphenols, such as hesperidin (36.06 μmol/g), ferulic acid (1.17 μmol/g), and alternariol (12.64 μmol/g), which can be a potential resource for the pharmaceutical industry. In conclusion, these results increase the diversity of CX endophytic fungi and the antioxidant and antibacterial activities of their secondary metabolites.
Collapse
Affiliation(s)
- Zizhong Tang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yihan Qin
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Wenhui Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Zhiqiao Zhao
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Wenjie Lin
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yirong Xiao
- Sichuan Agricultural University Hospital, Ya'an, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Hui Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Tongliang Bu
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Qingfeng Li
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yi Cai
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Huipeng Yao
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yujun Wan
- Sichuan Food Fermentation Industry Research and Design Institute, Chengdu, China
| |
Collapse
|
6
|
Nguyen MH, Shin KC, Lee JK. Fungal Community Analyses of Endophytic Fungi from Two Oak Species, Quercus mongolica and Quercus serrata, in Korea. MYCOBIOLOGY 2021; 49:385-395. [PMID: 34512082 PMCID: PMC8409933 DOI: 10.1080/12298093.2021.1948175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/19/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Fungal endophytes have been recorded in various plant species with a richness of diversity, and their presence plays an essential role in host plant protection against biotic and abiotic stresses. This study applied the Illumina MiSeq sequencing platform based on the amplification of fungal ribosomal ITS2 region to analyze fungal endophytic communities of two oak species (Quercus mongolica and Q. serrata) with different oak wilt disease susceptibilities in Korea. The results showed a total of 230,768 sequencing reads were obtained and clustered at a 97% similarity threshold into 709 operational taxonomic units (OTUs). The OTUs of Q. serrata were higher than that of Q. mongolica with the number of 617 OTUs and 512 OTUs, respectively. Shannon index also showed that Q. serrata had a significantly higher level of fungal diversity than Q. mongolica. Total of OTUs were assigned into 5 fungal phyla, 17 classes, 60 orders, 133 families, 195 genera, and 280 species. Ascomycota was the dominant phylum with 75.11% relative abundance, followed by Basidiomycota with 5.28%. Leptosillia, Aureobasidium and Acanthostigma were the most abundant genera detected in Q. serrata with the average relative abundance of 2.85, 2.76, and 2.19%, respectively. On the other hand, Peltaster, Cladosporium and Monochaetia were the most common genera detected in Q. mongolica with the average relative abundance of 4.83, 3.03, and 2.87%, respectively. Our results indicated that fungal endophytic communities were significantly different between two oak species and these differences could influence responses of host trees to oak wilt disease caused by Raffaelea quercus-mongolicae.
Collapse
Affiliation(s)
- Manh Ha Nguyen
- Tree Pathology and Mycology Laboratory, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, Korea
- Forest Protection Research Center, Vietnamese Academy of Forest Sciences, Hanoi, Vietnam
| | - Keum Chul Shin
- Department of Forest Environmental Resources, College of Agriculture and Life Sciences, Gyeongsang National University (Institute of Agriculture and Life Science), Jinju, Korea
| | - Jong Kyu Lee
- Tree Pathology and Mycology Laboratory, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
7
|
Diversity and spatial distribution of endophytic fungi in Cinnamomum longepaniculatum of Yibin, China. Arch Microbiol 2021; 203:3361-3372. [PMID: 33877389 DOI: 10.1007/s00203-021-02325-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Cinnamomum longepaniculatum (Gamble) N. Chao is an important woody incense plant that contains volatile terpenoids and has been extensively cultivated in Yibin, China. However, the relationship between endophytic fungal diversity and C. longepaniculatum species remains unclear. Here, fungal taxa in different tissue samples were analyzed using Illumina-based sequencing of ITS1 region of fungal rDNA genes. Results showed that 476 OTUs were identified in all tissues of C. longepaniculatum, with 78 OTUs common among all tissues. Similarity cluster analysis indicated that these OTUs belong to 5 phyla and at least 18 genera, with a large number of OTUs remaining unidentified at family and genus levels. The fungal community in seeds exhibited the greatest richness and diversity, followed by those in branches, leaves, and roots, respectively. Unclassified Chaetosphaeriales (91.66%), Passalora (57.17%), and unclassified Ascomycota (58.79%) OTUs dominated in root, branch, and leaf communities, respectively, and other common groups in the branch community included unclassified Ascomycota (12.13%), Houjia (10.38%), and Pseudoveronaea (5.43%), whereas other common groups in leaf community included Passalora (11.43%) and Uwebraunia (8.58%). Meanwhile, the seed community was dominated by unclassified Ascomycota (16.98%), unclassified Pleosporaceae (15.46%), and Talaromyces (12.50%) and also included high proportions of unclassified Nectriaceae (7.68%), Aspergillus (6.95%), Pestalotiopsis (6.02%), and Paraconiothyrium (5.11%) and several seed-specific taxa, including Peniophora, Cryptodiscus, and Penicillium. These findings suggest that Yibin-native C. longepaniculatum harbors rich and diverse endophytic communities that may represent an underexplored reservoir of biological resources.
Collapse
|
8
|
Diversity and Communities of Fungal Endophytes from Four Pinus Species in Korea. FORESTS 2021. [DOI: 10.3390/f12030302] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fungal endophytes are ubiquitous in nature. They are known as potential sources of natural products, and possible agents for biocontrol attributing to their ability to produce a repertoire of bioactive compounds. In this study, we isolated fungal endophytes from three different tissues (needle, stem and root) of four Pinus species (Pinus densiflora, Pinus koraiensis, Pnus rigida, and Pinus thunbergii) across 18 sampling sites in Korea. A total number of 5872 culturable fungal endophytes were isolated using standard culturing techniques. Molecular identification based on the sequence analyses of the internal transcribed spacer (ITS) or 28S ribosomal DNA revealed a total of 234 different fungal species. The isolated fungal endophytes belonged to Ascomycota (91.06%), Basidiomycota (5.95%) and Mucoromycota (2.97%), with 144 operational taxonomic units (OTUs) and 88 different genera. In all sampling sites, the highest species richness (S) was observed in site 1T (51 OTUs) while the lowest was observed in site 4T (27 OTUs). In terms of diversity, as measured by Shannon diversity index (H’), the sampling site 2D (H′ = 3.216) showed the highest while the lowest H’ was observed in site 2K (H’ = 2.232). Species richness (S) in three different tissues revealed that root and needle tissues are highly colonized with fungal endophytes compared to stem tissue. No significant difference was observed in the diversity of endophytes in three different tissues. Among the four Pinus species, P. thunbergii exhibited the highest species richness and diversity of fungal endophytes. Our findings also revealed that the environmental factors have no significant impact in shaping the composition of the fungal endophytes. Furthermore, FUNGuild analysis revealed three major classifications of fungal endophytes based on trophic modes namely saprotrophs, symbiotrophs, and pathotrophs in four Pinus species, with high proportions of saprotrophs and pathothrops.
Collapse
|
9
|
Luo HZ, Zhou JW, Sun B, Jiang H, Tang S, Jia AQ. Inhibitory effect of norharmane on Serratia marcescens NJ01 quorum sensing-mediated virulence factors and biofilm formation. BIOFOULING 2021; 37:145-160. [PMID: 33682541 DOI: 10.1080/08927014.2021.1874942] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Serratia marcescens NJ01, a Gram-negative bacterium, can infect tomato leaves and cause chlorosis and wilting. The present study evaluated the quorum sensing (QS) and biofilm inhibitory effects of seven carboline compounds against S. marcescens NJ01 at 20 μg ml-1, and subsequently focused the study on norharmane as this had the best inhibitory activity. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis confirmed the down-regulation of QS and biofilm related genes bsmA, bsmB, fimA, fimC, flhD, pigA, pigC and shlA on exposure to norharmane. Fourier-Transform Infrared Spectroscopy (FT-IR) analysis showed a reduction in the major components of the exopolysaccharide (EPS) matrix such as nucleic acids, proteins and fatty acids, which are involved in forming the tertiary structure of biofilms. Norharmane exposure also enhanced the susceptibility of the biofilm to ofloxacin. Hence, norharmane has the potential for use as an antibiotic adjuvant to enhance the efficacy of conventional antibiotics to reduce pathogenic bacterial infections.
Collapse
Affiliation(s)
- Huai-Zhi Luo
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
- School Life and Pharmaceutical Sciences, Engineering Research Center for Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, Haikou, China
| | - Jin-Wei Zhou
- School of Food (Biological) Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Bing Sun
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Huan Jiang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Shi Tang
- School Life and Pharmaceutical Sciences, Engineering Research Center for Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, Haikou, China
| | - Ai-Qun Jia
- School Life and Pharmaceutical Sciences, Engineering Research Center for Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, Haikou, China
| |
Collapse
|
10
|
Kouipou Toghueo RM, Youmbi DY, Boyom FF. Endophytes from Panax species. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2020.101882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
11
|
Barberis L, Michalet S, Piola F, Binet P. Root fungal endophytes: identity, phylogeny and roles in plant tolerance to metal stress. Fungal Biol 2020; 125:326-345. [PMID: 33766311 DOI: 10.1016/j.funbio.2020.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/12/2020] [Accepted: 11/29/2020] [Indexed: 12/27/2022]
Abstract
Metal trace elements accumulate in soils mainly because of anthropic activities, leading living organisms to develop strategies to handle metal toxicity. Plants often associate with root endophytic fungi, including nonmycorrhizal fungi, and some of these organisms are associated with metal tolerance. The lack of synthetic analyses of plant-endophyte-metal tripartite systems and the scant consideration for taxonomy led to this review aiming (1) to inventory non-mycorrhizal root fungal endophytes described with respect to their taxonomic diversity and (2) to determine the mutualistic roles of these plant-fungus associations under metal stress. More than 1500 species in 100 orders (mainly Hypocreales and Pleosporales) were reported from a wide variety of environments and hosts. Most reported endophytes had a positive effect on their host under metal stress, but with various effects on metal uptake or translocation and no clear taxonomic consistency. Future research considering the functional patterns and dynamics of these associations is thus encouraged.
Collapse
Affiliation(s)
- Louise Barberis
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, France
| | - Serge Michalet
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5557 Écologie microbienne, Villeurbanne, France
| | - Florence Piola
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, France
| | - Philippe Binet
- Université de Bourgogne-Franche-Comté, CNRS-UFC, UMR6249 Chrono-environnement, Montbéliard, France.
| |
Collapse
|
12
|
Nguyen MH, Yong JH, Sung HJ, Lee JK. Screening of Endophytic Fungal Isolates Against Raffaelea quercus-mongolicae Causing Oak Wilt Disease in Korea. MYCOBIOLOGY 2020; 48:484-494. [PMID: 33312015 PMCID: PMC7717708 DOI: 10.1080/12298093.2020.1830486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 06/12/2023]
Abstract
Oak wilt disease caused by Raffaelea quercus-mongolicae has emerged obviously in Korea. We selected antifungal isolates against R. quercus-mongolicae among 368 endophytic fungal isolates from different parts of oak and pine trees. The experiment was conducted in the primary and secondary screenings by dual culture test. The antifungal activity of the selected isolates was assessed in culture filtrate test based on the inhibition rates in mycelial growth, sporulation, and spore germination of oak wilt fungus. Five isolates, E089, E199, E282, E409 and E415, showed strong antifungal activity in culture filtrate test, and their antifungal activity decreased on the culture media supplemented with heated culture filtrate. Higher mycelial growth inhibitions on the unheated media were recorded in E409 (Colletotrichum acutatum), E089 (Daldinia childiae), E415 (Alternaria alternata) and E199 (Daldinia childiae) with the inhibition rates of 79.0%, 70.1%, 68.9% and 64.5%, respectively. These isolates also had the higher sporulation inhibitions on unheated media with the rates of 96.8%, 84.2%, 82.8% and 80.5%, respectively. The spore germination of the oak wilt fungus was completely inhibited by E282 (Nectria balsamea) on both unheated and heated media. These results showed that a higher number of potent antifungal isolates against oak wilt fungus was isolated from the petiole compared to the other parts. This study could contribute to the development of biological control approaches for the management of oak wilt disease caused by R. quercus-mongolicae.
Collapse
Affiliation(s)
- Manh Ha Nguyen
- Tree Pathology and Mycology Laboratory, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, Korea
- Forest Protection Research Center, Vietnamese Academy of Forest Sciences, Hanoi, Vietnam
| | - Joo Hyun Yong
- Tree Pathology and Mycology Laboratory, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, Korea
| | - Han Jung Sung
- Tree Pathology and Mycology Laboratory, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, Korea
| | - Jong Kyu Lee
- Tree Pathology and Mycology Laboratory, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
13
|
Guan YM, Deng JC, Ma YY, Li Y, Zhang YY. Seed-Associated Fungal Diversity and the Molecular Identification of Fusarium with Potential Threat to Ginseng ( Panax ginseng) in China. PLANT DISEASE 2020; 104:330-339. [PMID: 31850823 DOI: 10.1094/pdis-09-19-1817-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The utility of traditional methods for detecting seed-borne fungi is limited by the fact some fungi are unculturable or difficult to isolate. The seed-borne pathogens affecting Panax ginseng cultivation have not been fully characterized. Seed-borne fungi can be identified based on the high-throughput sequencing of internal transcribed spacer (ITS) amplicons. A hierarchical clustering tree diagram analysis based on operational taxonomic units revealed a relationship between the seed-borne fungi and the region from which the seeds were collected. This study analyzed the fungal diversity on 30 ginseng seed samples from the main ginseng-producing areas of China. The 50 most abundant genera were identified including those responsible for ginseng diseases, Fusarium, Alternaria, Nectria, Coniothyrium, Verticillium, Phoma, and Rhizoctonia. Fusarium species, which are the primary causes of root rot, were detected in all seed samples. The results of a phylogenetic analysis indicated that the seed-borne fungal species originating from the same region were closely related. Fungi on ginseng seeds from eight different regions were divided into eight clades, suggesting they were correlated with the local storage medium. A total of 518 Fusarium isolates were obtained and 10 species identified, all of which can be detrimental to ginseng production. Pathogenicity tests proved that seed-borne Fusarium species can infect ginseng seedlings and 2-year-old ginseng root, with potentially adverse effects on ginseng yield and quality.
Collapse
Affiliation(s)
- Yi Ming Guan
- Institute of Special Wild Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, China
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Jin Chao Deng
- Institute of Special Wild Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, China
| | - Ying Ying Ma
- Institute of Special Wild Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, China
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Ya Yu Zhang
- Institute of Special Wild Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, China
| |
Collapse
|
14
|
Acremonidin E produced by Penicillium sp. SNF123, a fungal endophyte of Panax ginseng, has antimelanogenic activities. J Ginseng Res 2019; 45:98-107. [PMID: 33437161 PMCID: PMC7790906 DOI: 10.1016/j.jgr.2019.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/27/2022] Open
Abstract
Background Ginseng extracts and ginseng-fermented products are widely used as functional cosmetic ingredients for their whitening and antiwrinkle effects. Recently, increasing attention has been given to bioactive metabolites isolated from endophytic fungi. However, little is known about the bioactive metabolites of the fungi associated with Panax ginseng Meyer. Methods An endophytic fungus, Penicillium sp. SNF123 was isolated from the root of P. ginseng, from which acremonidin E was purified. Acremonidin E was tested on melanin synthesis in the murine melanoma cell line B16F10, in the human melanoma cell line MNT-1, and in a pigmented 3D-human skin model, Melanoderm. Results Acremonidin E reduced melanogenesis in α-melanocyte-stimulating hormone (α-MSH)-stimulated B16F10 cells with minimal cytotoxicity. qRT–PCR analysis demonstrated that acremonidin E downregulated melanogenic genes, including tyrosinase and tyrosinase-related protein 1 (TRP-1), while their enzymatic activities were unaffected. The antimelanogenic effects of acremonidin E were further confirmed in MNT-1 and a pigmented 3D human epidermal skin model, Melanoderm. Immunohistological examination of the Melanoderm further confirmed the regression of both melanin synthesis and melanocyte activation in the treated tissue. Conclusion This study demonstrates that acremonidin E, a bioactive metabolite derived from a fungal endophyte of P. ginseng, can inhibit melanin synthesis by downregulating tyrosinase, illuminating the potential utility of microorganisms associated with P. ginseng for cosmetic ingredients.
Collapse
|
15
|
Diversity of bacterial endophytes in Panax ginseng and their protective effects against pathogens. 3 Biotech 2018; 8:397. [PMID: 30221110 DOI: 10.1007/s13205-018-1417-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 09/01/2018] [Indexed: 10/28/2022] Open
Abstract
Although endophytic bacteria are known to colonize Panax ginseng, little is known about their diversity and roles. We addressed in the present study by comparing endophytic bacterial populations in P. ginseng plants of different ages (2-6 years) and in various tissue types (root, stem, leaf, and flower stalk). A total of 116 strains assigned to 42 species were identified by 16S rDNA sequencing. The predominant phylum was Firmicutes. Two-year-old ginseng plants and root tissues showed the greatest diversity of endophytic bacteria, with Bacillales being the predominant order. The antifungal activity of isolates against two pathogens, Cylindrocarpon destructans and/or Botrytis cinerea, was evaluated in dual-culture assays. In total, 28 strains showed antifungal activity with PgBE14 (Bacillus amyloliquefaciens), PgBE40 (B. megaterium), PgBE39, PgBE45 (Pseudomonas frederiksbergensis), and PgBE42 (Staphylococcus saprophyticus) inhibiting both pathogens. These results improve our understanding of the structure and diversity of endophytic bacterial communities of P. ginseng and identify strains with antifungal activity that have potential applications as biocontrol agents.
Collapse
|
16
|
Park YH, Kim Y, Mishra RC, Bae H. Fungal endophytes inhabiting mountain-cultivated ginseng (Panax ginseng Meyer): Diversity and biocontrol activity against ginseng pathogens. Sci Rep 2017; 7:16221. [PMID: 29176690 PMCID: PMC5701219 DOI: 10.1038/s41598-017-16181-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/08/2017] [Indexed: 02/06/2023] Open
Abstract
Fungal endophytes isolated from mountain-cultivated ginseng (MCG, Panax ginseng Meyer) were explored for their diversity and biocontrol activity against ginseng pathogens (Alternaria panax, Botrytis cinerea, Cylindrocarpon destructans, Pythium sp. and Rhizoctonia solani). A total of 1,300 isolates were isolated from three tissues (root, stem and leaf) from MCGs grown in 24 different geographic locations in Korea. In total, 129 different fungal isolates were authenticated by molecular identification based on internal transcribed spacer (ITS) sequences. The fungal endophytes belonged to Ascomycota (81.7%), Basidiomycota (7.08%), Zygomycota (10%) and Unknown (1.15%), with 59 genera. Analysis of diversity indices across sampling sites suggested species abundance as a function of geographical and environmental factors of the locations. Shannon diversity index and richness in the different tissues revealed that root tissues are colonized more than stem and leaf tissues, and also certain fungal endophytes are tissue specific. Assessment of the ethyl acetate extracts from 129 fungal isolates for their biocontrol activity against 5 ginseng pathogens revealed that Trichoderma polysporum produces the antimcriobial metabolite against all the pathogens. This result indicates the promise of its potential usage as a biocontrol agent.
Collapse
Affiliation(s)
- Young-Hwan Park
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbook, 38541, Republic of Korea
| | - Yoosam Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbook, 38541, Republic of Korea
| | - Ratnesh Chandra Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbook, 38541, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbook, 38541, Republic of Korea.
| |
Collapse
|
17
|
Khan Chowdhury MDE, Jeon J, Ok Rim S, Park YH, Kyu Lee S, Bae H. Composition, diversity and bioactivity of culturable bacterial endophytes in mountain-cultivated ginseng in Korea. Sci Rep 2017; 7:10098. [PMID: 28855721 PMCID: PMC5577135 DOI: 10.1038/s41598-017-10280-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/07/2017] [Indexed: 01/09/2023] Open
Abstract
Plants harbor diverse communities of bacterial species in their internal compartments. Here we isolated and identified bacterial endophytes from mountain-cultivated ginseng (MCG, Panax ginseng Meyer) to make working collection of endophytes and exploit their potentially beneficial properties toward plants and human being. A total of 1,886 bacteria were isolated from root, stem and leaf of MCGs grown in 24 different sites across the nation, using culture-dependent approach. Sequencing of 16S rDNA allowed us to classify them into 252 distinct groups. Taxonomic binning of them resulted in 117 operational taxonomic units (OTUs). Analysis of diversity indices across sampling sites and tissues suggested that composition of bacterial endophyte community within ginseng could differ substantially from one site to the next as well as from one host compartment to another. Assessment of 252 bacterial isolates for their beneficial traits to host plants showed that some bacteria possesses the ability to promote plant growth and produce ß-glucosidase, indicating their potential roles in plant growth promotion and bio-transformation. Taken together, our work provides not only valuable resources for utilization of bacterial endophytes in ginseng but also insights into bacterial communities inside a plant of medicinal importance.
Collapse
Affiliation(s)
- M D Emran Khan Chowdhury
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbook, 38541, Republic of Korea
| | - Junhyun Jeon
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbook, 38541, Republic of Korea
| | - Soon Ok Rim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbook, 38541, Republic of Korea
| | - Young-Hwan Park
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbook, 38541, Republic of Korea
| | - Seung Kyu Lee
- Division of Forest Diseases & Insect Pests, Korea Forest Research Institute, Seoul, 02455, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbook, 38541, Republic of Korea.
| |
Collapse
|
18
|
Septiana E, Sukarno N, Sukarno, Simanjuntak P. Endophytic Fungi Associated With Turmeric ( Curcuma longa L.) Can Inhibit Histamine-Forming Bacteria in Fish. HAYATI JOURNAL OF BIOSCIENCES 2017. [DOI: 10.1016/j.hjb.2017.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
19
|
Zheng YK, Miao CP, Chen HH, Huang FF, Xia YM, Chen YW, Zhao LX. Endophytic fungi harbored in Panax notoginseng: diversity and potential as biological control agents against host plant pathogens of root-rot disease. J Ginseng Res 2016; 41:353-360. [PMID: 28701877 PMCID: PMC5489767 DOI: 10.1016/j.jgr.2016.07.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 05/31/2016] [Accepted: 07/09/2016] [Indexed: 12/28/2022] Open
Abstract
Background Endophytic fungi play an important role in balancing the ecosystem and boosting host growth. In the present study, we investigated the endophytic fungal diversity of healthy Panax notoginseng and evaluated its potential antimicrobial activity against five major phytopathogens causing root-rot of P. notoginseng. Methods A culture-dependent technique, combining morphological and molecular methods, was used to analyze endophytic fungal diversity. A double-layer agar technique was used to challenge the phytopathogens of P. notoginseng. Results A total of 89 fungi were obtained from the roots, stems, leaves, and seeds of P. notoginseng, and 41 isolates representing different morphotypes were selected for taxonomic characterization. The fungal isolates belonged to Ascomycota (96.6%) and Zygomycota (3.4%). All isolates were classified to 23 genera and an unknown taxon belonging to Sordariomycetes. The number of isolates obtained from different tissues ranged from 12 to 42 for leaves and roots, respectively. The selected endophytic fungal isolates were challenged by the root-rot pathogens Alternaria panax, Fusarium oxysporum, Fusarium solani, Phoma herbarum, and Mycocentrospora acerina. Twenty-six of the 41 isolates (63.4%) exhibited activity against at least one of the pathogens tested. Conclusion Our results suggested that P. notoginseng harbors diversified endophytic fungi that would provide a basis for the identification of new bioactive compounds, and for effective biocontrol of notoginseng root rot.
Collapse
Affiliation(s)
- You-Kun Zheng
- Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
| | - Cui-Ping Miao
- Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
| | - Hua-Hong Chen
- Department of Chemistry and Life Science, Chuxiong Normal University, Chuxiong, China
| | - Fang-Fang Huang
- Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
| | - Yu-Mei Xia
- Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
| | - You-Wei Chen
- Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
| | - Li-Xing Zhao
- Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
| |
Collapse
|
20
|
Cummings NJ, Ambrose A, Braithwaite M, Bissett J, Roslan HA, Abdullah J, Stewart A, Agbayani FV, Steyaert J, Hill RA. Diversity of root-endophytic Trichoderma from Malaysian Borneo. Mycol Prog 2016. [DOI: 10.1007/s11557-016-1192-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Diversity of fungal endophytes from the medicinal plant Dendropanax arboreus in a protected area of Mexico. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1184-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Jang IB, Lee DY, Yu J, Park HW, Mo HS, Park KC, Hyun DY, Lee EH, Kim KH, Oh CS. Photosynthesis rates, growth, and ginsenoside contents of 2-yr-old Panax ginseng grown at different light transmission rates in a greenhouse. J Ginseng Res 2015; 39:345-53. [PMID: 26869827 PMCID: PMC4593790 DOI: 10.1016/j.jgr.2015.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/13/2015] [Accepted: 03/17/2015] [Indexed: 11/19/2022] Open
Abstract
Background Ginseng is a semishade perennial plant cultivated in sloping, sun-shaded areas in Korea. Recently, owing to air-environmental stress and various fungal diseases, greenhouse cultivation has been suggested as an alternative. However, the optimal light transmission rate (LTR) in the greenhouse has not been established. Methods The effect of LTR on photosynthesis rate, growth, and ginsenoside content of ginseng was examined by growing ginseng at the greenhouse under 6%, 9%, 13%, and 17% of LTR. Results The light-saturated net photosynthesis rate (Asat) and stomatal conductance (gs) of ginseng increased until the LTR reached 17% in the early stage of growth, whereas they dropped sharply owing to excessive leaf chlorosis at 17% LTR during the hottest summer period in August. Overall, 6–17% of LTR had no effect on the aerial part of plant length or diameter, whereas 17% and 13% of LRT induced the largest leaf area and the highest root weight, respectively. The total ginsenoside content of the ginseng leaves increased as the LTR increased, and the overall content of protopanaxatriol line ginsenosides was higher than that of protopanaxadiol line ginsenosides. The ginsenoside content of the ginseng roots also increased as the LTR increased, and the total ginsenoside content of ginseng grown at 17% LTR increased by 49.7% and 68.3% more than the ginseng grown at 6% LTR in August and final harvest, respectively. Conclusion These results indicate that 13–17% of LTR should be recommended for greenhouse cultivation of ginseng.
Collapse
Affiliation(s)
- In-Bae Jang
- Department of Herbal Crop Research, NIHHS, RDA, Eumseong, Korea
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, Korea
| | - Dae-Young Lee
- Department of Herbal Crop Research, NIHHS, RDA, Eumseong, Korea
| | - Jin Yu
- Department of Herbal Crop Research, NIHHS, RDA, Eumseong, Korea
| | - Hong-Woo Park
- Department of Herbal Crop Research, NIHHS, RDA, Eumseong, Korea
| | - Hwang-Sung Mo
- Department of Herbal Crop Research, NIHHS, RDA, Eumseong, Korea
| | - Kee-Choon Park
- Department of Herbal Crop Research, NIHHS, RDA, Eumseong, Korea
| | - Dong-Yun Hyun
- Planning and Coordination Division, NIHHS, RDA, Suwon, Korea
| | - Eung-Ho Lee
- Department of Herbal Crop Research, NIHHS, RDA, Eumseong, Korea
| | - Kee-Hong Kim
- Department of Herbal Crop Research, NIHHS, RDA, Eumseong, Korea
| | - Chang-Sik Oh
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, Korea
- Corresponding author. Department of Horticultural Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Yongin 446-701, Korea.
| |
Collapse
|
23
|
|
24
|
Delaye L, García-Guzmán G, Heil M. Endophytes versus biotrophic and necrotrophic pathogens—are fungal lifestyles evolutionarily stable traits? FUNGAL DIVERS 2013. [DOI: 10.1007/s13225-013-0240-y] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|