1
|
Constantinescu A, Stoicescu ER, Iacob R, Chira CA, Cocolea DM, Nicola AC, Mladin R, Oancea C, Manolescu D. CT-Guided Transthoracic Core-Needle Biopsy of Pulmonary Nodules: Current Practices, Efficacy, and Safety Considerations. J Clin Med 2024; 13:7330. [PMID: 39685787 DOI: 10.3390/jcm13237330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
CT-guided transthoracic core-needle biopsy (CT-TTNB) is a minimally invasive procedure that plays a crucial role in diagnosing pulmonary nodules. With high diagnostic yield and low complication rates, CT-TTNB is favored over traditional surgical biopsies, providing accuracy in detecting both malignant and benign conditions. This literature review aims to present a comprehensive overview of CT-TTNB, focusing on its indications, procedural techniques, diagnostic yield, and safety considerations. Studies published between 2013 and 2024 were systematically reviewed from PubMed, Web of Science, Scopus, and Cochrane Library using the SANRA methodology. The results highlight that CT-TTNB has a diagnostic yield of 85-95% and sensitivity rates for detecting malignancies between 92 and 97%. Several factors, including nodule size, lesion depth, needle passes, and imaging techniques, influence diagnostic success. Complications such as pneumothorax and pulmonary hemorrhage were noted, with incidence rates varying from 12 to 45% for pneumothorax and 4 to 27% for hemorrhage. Preventative strategies and management algorithms are essential for minimizing and addressing these risks. In conclusion, CT-TTNB remains a reliable and effective method for diagnosing pulmonary nodules, particularly in peripheral lung lesions. Advancements such as PET/CT fusion imaging, AI-assisted biopsy planning, and robotic systems further enhance precision and safety. This review emphasizes the importance of careful patient selection and procedural planning to maximize outcomes while minimizing risks, ensuring that CT-TTNB continues to be an indispensable tool in pulmonary diagnostics.
Collapse
Affiliation(s)
- Amalia Constantinescu
- Doctoral School, 'Victor Babes' University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 6 No. 2, 300041 Timisoara, Romania
| | - Emil Robert Stoicescu
- Radiology and Medical Imaging University Clinic, Department XV, 'Victor Babes' University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Medical Communication, 'Victor Babes' University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, 'Victor Babes' University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Field of Applied Engineering Sciences, Specialization Statistical Methods and Techniques in Health and Clinical Research, Faculty of Mechanics, 'Politehnica' University Timisoara, Mihai Viteazul Boulevard No. 1, 300222 Timisoara, Romania
| | - Roxana Iacob
- Research Center for Medical Communication, 'Victor Babes' University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Field of Applied Engineering Sciences, Specialization Statistical Methods and Techniques in Health and Clinical Research, Faculty of Mechanics, 'Politehnica' University Timisoara, Mihai Viteazul Boulevard No. 1, 300222 Timisoara, Romania
- Department of Anatomy and Embryology, 'Victor Babes' University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Cosmin Alexandru Chira
- Doctoral School, 'Victor Babes' University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 6 No. 2, 300041 Timisoara, Romania
| | - Daiana Marina Cocolea
- Doctoral School, 'Victor Babes' University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 6 No. 2, 300041 Timisoara, Romania
- Field of Applied Engineering Sciences, Specialization Statistical Methods and Techniques in Health and Clinical Research, Faculty of Mechanics, 'Politehnica' University Timisoara, Mihai Viteazul Boulevard No. 1, 300222 Timisoara, Romania
| | - Alin Ciprian Nicola
- Doctoral School, 'Victor Babes' University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 6 No. 2, 300041 Timisoara, Romania
| | - Roxana Mladin
- Doctoral School, 'Victor Babes' University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 6 No. 2, 300041 Timisoara, Romania
| | - Cristian Oancea
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases (CRIPMRD), 'Victor Babes' University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- Department of Pulmonology, 'Victor Babes' University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | - Diana Manolescu
- Radiology and Medical Imaging University Clinic, Department XV, 'Victor Babes' University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases (CRIPMRD), 'Victor Babes' University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| |
Collapse
|
2
|
Jalaeian H, Richardson K, Kozlowski K, Patel A, Venkat S. Does needle gauge affect complication rates of computed tomography-guided lung biopsy? J Thorac Dis 2024; 16:4310-4318. [PMID: 39144294 PMCID: PMC11320254 DOI: 10.21037/jtd-24-240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/24/2024] [Indexed: 08/16/2024]
Abstract
Background It has been thought a larger bore biopsy needle may yield a better sample for molecular testing, but this could potentially expose the patient to higher pneumothorax rates. This study aims to determine if a larger bore biopsy system results in more complications. Methods A total of 193 patients who underwent computed tomography (CT)-guided lung biopsy in a single tertiary center from 2013-2021 were evaluated retrospectively. Patients were divided into two groups, patients who underwent lung biopsy using the 17/18-gauge (18G) biopsy system and the 19/20-gauge (20G) biopsy system. Data recorded included biopsy needle gauge, nodule location and size, plug use, positioning, the length of the intraparenchymal tract, number of biopsy passes, pneumothorax, chest tube insertion, and admission. Results The mean age was 64.1±12.4 years. The median diameter of the lung nodules was 1.95 cm, and the median depth of the intraparenchymal needle tract was 2.7 cm. Pneumothorax was identified during the procedure by CT fluoroscopy or on post-procedural chest X-ray (CXR). The overall rate of pneumothorax among all patients was 35.2%, and 10.9% of the study population (i.e., 30.1% of patients with pneumothorax) required chest tube insertion. The rate of pneumothorax or chest tube insertion was not significantly different between patients who underwent lung biopsy using 17/18G or 19/20G biopsy system. Patients who developed pneumothorax were older, with smaller-sized pulmonary nodules and longer length of the intraparenchymal tract. The pathologic sensitivity of the 18G gun was higher than that of the 20G gun (93% sensitivity, 100% specificity vs. 79.5% sensitivity, 100% specificity). In the multivariate logistic regression fitted model, the length of the intraparenchymal tract was the only factor predictive of post-procedural pneumothorax and chest tube insertion. An intraparenchymal needle tract length of greater than 2 cm was identified to have the best threshold to predict pneumothorax [sensitivity: 73.5%; false positive rate: 57.6%; area under the curve: 66.27%]. Conclusions Findings suggest similar rates of pneumothorax and chest tube insertion using small 19/20G vs. 17/18G biopsy systems. The 18G system was more sensitive compared to the 20G system in determining pathologic results. Increasing length of lung parenchyma needle tract and smaller lung nodules appear to be risk factors for pneumothorax. Physicians should plan on intraparenchymal tracts that are less than 2 cm to decrease the chance of pneumothorax.
Collapse
Affiliation(s)
- Hamed Jalaeian
- Department of Interventional Radiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kenneth Richardson
- Department of Interventional Radiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Konrad Kozlowski
- Department of Interventional Radiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Anmol Patel
- Department of Interventional Radiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shree Venkat
- Department of Interventional Radiology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
3
|
Chen C, Wang Y, Huang H, He X, Li W. Percutaneous computed tomography-guided core needle biopsy can be used to histologically confirm the clinical features and long-term prognosis of pulmonary neuroendocrine neoplasms. Jpn J Radiol 2023; 41:1414-1419. [PMID: 37395983 DOI: 10.1007/s11604-023-01465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/22/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE We investigated the clinical features and prognosis outcomes of pulmonary neuroendocrine neoplasms (PNENs) which were histologically confirmed after percutaneous computed tomography-guided core needle biopsy (PCT-CNB). MATERIALS AND METHODS We retrospectively investigated 173 patients who had PNENs which were histologically confirmed after PCT-CNB; patients were split into low and intermediate-grade neuroendocrine tumor (LIGNET) (typical carcinoid (TC) and atypical carcinoid (AC)) and high-grade neuroendocrine carcinoma-tumor (HGNEC) groups. In this latter group, patients were further subdivided into large-cell neuroendocrine carcinoma (LCNEC), small-cell lung cancer (SCLC), and high-grade neuroendocrine carcinoma-not otherwise specified (HGNEC-NOS) groups. Complications after biopsy were recorded. We also assessed overall survival (OS) rates using Kaplan-Meier curves, with prognostic factors determined using univariate and multivariate analyses. RESULTS Complications were mainly pneumothorax (22.5; 39/173 patients), chest tube placement (4.0; 7/173 patients), and pulmonary bleeding (33.5%; 58/173 procedures)-no patient mortality was recorded. Definitive diagnoses were ascribed to 102 SCLC, 10 LCNEC, 43 HGNEC-NOS, 7 TC, and 11 AC patients. The 1- and 3-year OS rates in the LIGNET group were 87.5% and 68.1%, respectively, and 59.2 and 20.9% in the HGNEC group, respectively these data were statistically significant (P = 0.010). For SCLC, 1- and 3-year OS rates were 63.3 and 22.3%, 30.0 and 10.0% for LCNEC, and 53.3% and 20.1% for HGNEC-NOS, respectively (P = 0.031). Independent prognostic factors for OS included disease type and distant metastasis. CONCLUSION PNENs may be pathologically diagnosed using PCT-CNB. While differential diagnoses between LCNEC and SCLC are problematic in some patients, a HGNEC-NOS diagnosis was ascribed and PCT-CNB samples were shown to predict NEN OS rates.
Collapse
Affiliation(s)
- Chao Chen
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, No.270 Dongan Road, Xuhui, 200032, Shanghai, China
| | - Ying Wang
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, No.270 Dongan Road, Xuhui, 200032, Shanghai, China
| | - Haozhe Huang
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, No.270 Dongan Road, Xuhui, 200032, Shanghai, China
| | - Xinhong He
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, No.270 Dongan Road, Xuhui, 200032, Shanghai, China
| | - Wentao Li
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, No.270 Dongan Road, Xuhui, 200032, Shanghai, China.
| |
Collapse
|
4
|
Zhu J, Qu Y, Lu M, Ma A, Mo J, Wen Z. CT-based radiomics for prediction of pulmonary haemorrhage after percutaneous CT-guided transthoracic lung biopsy of pulmonary nodules. Clin Radiol 2023; 78:e993-e1000. [PMID: 37726191 DOI: 10.1016/j.crad.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023]
Abstract
AIM To evaluate the feasibility of intranodular and perinodular computed tomography (CT) radiomics features for predicting the occurrence of pulmonary haemorrhage after percutaneous CT-guided transthoracic lung biopsy (PCTLB) in pulmonary nodules. MATERIALS AND METHODS The data for 332 patients with pulmonary nodules who underwent PCTLB were reviewed retrospectively. Pulmonary haemorrhage after PCTLB was evaluated using CT (144 cases occurred). Radiomics features based on gross nodular (GNV) and perinodular volumes (PNV) were extracted from pre-biopsy CT images and features selection using least absolute shrinkage and selection operator (LASSO) regression, and three radiomics scores (rad-scores) were built. Rad-scores, clinical, and clinical-radiomic models were developed and evaluated to predict the occurrence of pulmonary haemorrhage. RESULTS Five, five, and six significant features were selected for prediction of pulmonary haemorrhage based on GNV, PNV, and GNV + PNV, respectively. Lesion depth was the only clinical characteristics related to pulmonary haemorrhage. Lesion depth and rad-score based on GNV, PNV, and GNV + PNV for predicting the pulmonary haemorrhage achieved areas under the curves (AUCs) of 0.656, 0.645, 0.651, and 0.635 in the validation group, respectively. Three clinical-radiomic models improved the AUCs to 0.743, 0.723, and 0.748. The performance of rad-score_GNV + PNV combined with lesion depth outperformed the clinical model (p=0.024) and the radiomics signature (p=0.038). In addition, the radiomics signatures were significantly associated with higher-grade pulmonary haemorrhage (p<0.05). CONCLUSIONS Radiomics features from intranodular and perinodular regions of pulmonary nodules have good predictive ability for pulmonary haemorrhage after PCTLB, which may provide additional predictive value for clinical practice.
Collapse
Affiliation(s)
- J Zhu
- Department of Radiology, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong, 510282, China
| | - Y Qu
- Department of Radiology, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong, 510282, China
| | - M Lu
- Department of Radiology, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong, 510282, China
| | - A Ma
- Department of Radiology, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong, 510282, China
| | - J Mo
- Department of Radiology, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong, 510282, China
| | - Z Wen
- Department of Radiology, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong, 510282, China.
| |
Collapse
|
5
|
Esakov YS, Shrainer IV, Kirpichnikova EI, Kulikova EA, Efteev LA, Tukvadze ZG, Khvedelidze GV, Galkin VN. [Clinical efficacy of ct-guided transthoracic needle biopsy of peripheral lung lesions]. Khirurgiia (Mosk) 2022:34-42. [PMID: 35593626 DOI: 10.17116/hirurgia202205134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To evaluate the effectiveness of a step-by-step protocol for GT-guided transthoracic biopsy in verification of peripheral lung tumors. MATERIAL AND METHODS A retrospective analysis of the results of GT-guided transthoracic biopsies of focal lung neoplasms was performed between October 2019 and December 2020. The analysis included the results of 176 biopsies in 158 patients. RESULTS Primary biopsy was informative in 139 (87.97%) out of 158 patients. There were 155 (88.07%) informative and 21 (11.93%) non-informative biopsies. Lung adenocarcinoma was diagnosed in 41 (25.95%) patients, squamous cell carcinoma in 35 (22.15%) patients, and small cell carcinoma in 9 (5.7%) patients. There were 17 (10.76%) patients with uninformative biopsy results. Sensitivity, specificity and accuracy were 86%, 95.5%, and 87.8%, respectively. PPV was 98.9%, NPV - 58.3%. Various complications occurred after 65 (36.93%) out of 176 biopsies (95% CI 30.15-44.27). Pneumothorax followed by pleural drainage was detected after 8 (4.55%) biopsies. CONCLUSION Accuracy of a step-by-step protocol for transthoracic biopsy was 88% that is not inferior to similar results in large-scale studies devoted to specialized navigation systems.
Collapse
Affiliation(s)
- Yu S Esakov
- Moscow City Oncology Hospital No. 1, Moscow, Russia
| | - I V Shrainer
- Moscow City Oncology Hospital No. 1, Moscow, Russia
| | | | - E A Kulikova
- Moscow City Oncology Hospital No. 1, Moscow, Russia
| | - L A Efteev
- Moscow City Oncology Hospital No. 1, Moscow, Russia
| | - Z G Tukvadze
- Moscow City Oncology Hospital No. 1, Moscow, Russia
| | | | - V N Galkin
- Moscow City Oncology Hospital No. 1, Moscow, Russia
| |
Collapse
|