1
|
Lu C, Guo C, Wu C, Zhang L, Liu X, Guo S. Functional Role of miR-499a-5p in the Development of Gastric Cancer. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2024; 36:45-52. [PMID: 39782682 PMCID: PMC11736815 DOI: 10.5152/tjg.2024.24429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/18/2024] [Indexed: 01/12/2025]
Abstract
Gastric cancer (GC) is a highly prone malignant tumor, which has attracted wide attention. This study investigated the expression and clinical value of miR-499a-5p in GC. A total of 105 patients with GC were included in this study. Simultaneously, 55 patients with benign stomach disorders and 45 healthy subjects were enrolled as controls. Real-time quantitative polymerase chain reaction was used to determine the expression of miR-499a-5p. The receiver operating characteristic curve was used to assess the diagnostic value of miR-499a-5p in GC. Kaplan-Meier and logistic analyses were used to evaluate the association between miR-499a-5p and GC prognosis. The levels of miR-499a-5p are markedly downregulated in GC and have a high diagnostic value. miR-499a-5p is closely linked to pathological features of GC. Overexpression of miR-499a-5p inhibits GC cell growth, migration, and invasion. Furthermore, miR499a-5p is also related to GC and 5-year survival, and is a risk factor for GC death. The levels of miR-499a-5p were markedly downregulated in GC and related to GC pathological features. It has the potential to become a biomarker for the diagnosis of GC.
Collapse
Affiliation(s)
- Cuiling Lu
- Digestive Endoscopy Center, Gansu Wuwei Tumour Hospital, Wuwei, China
| | - Chengwang Guo
- Department of Gastrosurgery, Gansu Wuwei Tumour Hospital, Wuwei, China
| | - Cuihua Wu
- Digestive Endoscopy Center, Gansu Wuwei Tumour Hospital, Wuwei, China
| | - Liping Zhang
- Digestive Endoscopy Center, Gansu Wuwei Tumour Hospital, Wuwei, China
| | - Xiaoling Liu
- Digestive Endoscopy Center, Gansu Wuwei Tumour Hospital, Wuwei, China
| | - Shoucun Guo
- Digestive Endoscopy Center, Gansu Wuwei Tumour Hospital, Wuwei, China
| |
Collapse
|
2
|
Armos R, Bojtor B, Papp M, Illyes I, Lengyel B, Kiss A, Szili B, Tobias B, Balla B, Piko H, Illes A, Putz Z, Kiss A, Toth E, Takacs I, Kosa JP, Lakatos P. MicroRNA Profiling in Papillary Thyroid Cancer. Int J Mol Sci 2024; 25:9362. [PMID: 39273308 PMCID: PMC11395536 DOI: 10.3390/ijms25179362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Genetic alterations are well known to be related to the pathogenesis and prognosis of papillary thyroid carcinoma (PTC). Some miRNA expression dysregulations have previously been described in the context of cancer development including thyroid carcinoma. In our study, we performed original molecular diagnostics on tissue samples related to our own patients. We aimed to identify all dysregulated miRNAs in potential association with PTC development via sequencing much higher numbers of control-matched PTC tissue samples and analyzing a wider variety of miRNA types than previous studies. We analyzed the expression levels of 2656 different human miRNAs in the context of 236 thyroid tissue samples (118 tumor and control pairs) related to anonymized PTC cases. Also, KEGG pathway enrichment analysis and GO framework analysis were used to establish the links between miRNA dysregulation and certain biological processes, pathways of signaling, molecular functions, and cellular components. A total of 30 significant differential miRNA expressions with at least ±1 log2 fold change were found related to PTC including, e.g., miR-551b, miR-146b, miR-221, miR-222, and miR-375, among others, being highly upregulated, as well as miR-873 and miR-204 being downregulated. In addition, we identified miRNA patterns in vast databases (KEGG and GO) closely similar to that of PTC including, e.g., miRNA patterns of prostate cancer, HTLV infection, HIF-1 signaling, cellular responses to growth factor stimulus and organic substance, and negative regulation of gene expression. We also found 352 potential associations between certain miRNA expressions and states of clinicopathological variables. Our findings-supported by the largest case number of original matched-control PTC-miRNA relation research-suggest a distinct miRNA expression profile in PTC that could contribute to a deeper understanding of the underlying molecular mechanisms promoting the pathogenesis of the disease. Moreover, significant miRNA expression deviations and their signaling pathways in PTC presented in our study may serve as potential biomarkers for PTC diagnosis and prognosis or even therapeutic targets in the future.
Collapse
Affiliation(s)
- Richard Armos
- Department of Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
- SE HUN-REN-TKI ENDOMOLPAT Research Group, 1085 Budapest, Hungary
| | - Bence Bojtor
- Department of Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Marton Papp
- Centre for Bioinformatics, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Ildiko Illyes
- Department of Pathology, Forensic and Insurance Medicine, Faculty of Medicine, Semmelweis University, 1091 Budapest, Hungary
| | - Balazs Lengyel
- Department of Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Andras Kiss
- Department of Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Balazs Szili
- Department of Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Balint Tobias
- Department of Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
- SE HUN-REN-TKI ENDOMOLPAT Research Group, 1085 Budapest, Hungary
| | - Bernadett Balla
- SE HUN-REN-TKI ENDOMOLPAT Research Group, 1085 Budapest, Hungary
| | - Henriett Piko
- Department of Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Anett Illes
- Department of Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Zsuzsanna Putz
- Department of Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
- SE HUN-REN-TKI ENDOMOLPAT Research Group, 1085 Budapest, Hungary
| | - Andras Kiss
- Department of Pathology, Forensic and Insurance Medicine, Faculty of Medicine, Semmelweis University, 1091 Budapest, Hungary
| | - Erika Toth
- Department of Surgical and Molecular Pathology, National Institute of Oncology, 1122 Budapest, Hungary
| | - Istvan Takacs
- Department of Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Janos P Kosa
- Department of Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
- SE HUN-REN-TKI ENDOMOLPAT Research Group, 1085 Budapest, Hungary
| | - Peter Lakatos
- Department of Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
- SE HUN-REN-TKI ENDOMOLPAT Research Group, 1085 Budapest, Hungary
| |
Collapse
|
3
|
Bakinowska E, Kiełbowski K, Skórka P, Dach A, Olejnik-Wojciechowska J, Szwedkowicz A, Pawlik A. Non-Coding RNA as Biomarkers and Their Role in the Pathogenesis of Gastric Cancer-A Narrative Review. Int J Mol Sci 2024; 25:5144. [PMID: 38791187 PMCID: PMC11121563 DOI: 10.3390/ijms25105144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Non-coding RNAs (ncRNAs) represent a broad family of molecules that regulate gene expression, including microRNAs, long non-coding RNAs and circular RNAs, amongst others. Dysregulated expression of ncRNAs alters gene expression, which is implicated in the pathogenesis of several malignancies and inflammatory diseases. Gastric cancer is the fifth most frequently diagnosed cancer and the fourth most common cause of cancer-related death. Studies have found that altered expression of ncRNAs may contribute to tumourigenesis through regulating proliferation, apoptosis, drug resistance and metastasis. This review describes the potential use of ncRNAs as diagnostic and prognostic biomarkers. Moreover, we discuss the involvement of ncRNAs in the pathogenesis of gastric cancer, including their interactions with the members of major signalling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (P.S.); (A.D.); (J.O.-W.); (A.S.)
| |
Collapse
|
4
|
Zhang Q, Du Z, Wang X, Li F, Liu Y, Sun J, Zhang L, Xiao Y, Lu X, Yu H, Liu T. Cell-free Nucleic Acid as Promising Diagnostic Biomarkers for Gastric Cancer: a Systematic Review. J Cancer 2024; 15:2900-2912. [PMID: 38706900 PMCID: PMC11064260 DOI: 10.7150/jca.92704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/09/2024] [Indexed: 05/07/2024] Open
Abstract
Background: Gastric cancer (GC) is a common malignancy with early detection being crucial for survival. Liquid biopsy analysis using cell-free nucleic acid is a preferred method for detection. Hence, we conducted a systematic review to assess the diagnostic efficacy of cell-free nucleic acid markers for GC. Methods: We searched PubMed and ISI Web of Science databases for articles that conformed to our inclusion and exclusion criteria from 2012 to 2022. The following information was abstracted: first author, year of publication, country/region, age, male proportion, tumor stage for cases, specimen type, measurement method, targeted markers and diagnostic related indicators (including sensitivity, specificity, AUC, P-value). Results: Fifty-eight studies examined cell-free RNAs (cfRNAs) with a total of 62 individual circulating markers and 7 panels in serum or plasma, while 21 studies evaluated cell-free DNAs (cfDNAs) with 29 individual circulating markers and 7 panels. For individual cfRNAs, the median (range) sensitivity and specificity were 80% (21% - 98%) and 80% (54% - 99%), respectively. The median (range) sensitivity and specificity for cfRNA panels were 86% (83% - 90%) and 75% (60% - 98%), respectively. In comparison, the median (range) sensitivity and specificity reported for individual cfDNAs were 50% (18% - 96%) and 93% (57% - 100%), respectively, while cfDNA panels had a median (range) sensitivity and specificity of 85% (41% - 92%) and 73.5% (38% - 90%), respectively. The meta results indicate that cfRNA markers exhibit high sensitivity (80%) and low specificity (80%) for detecting GC, while cfDNA markers have lower sensitivity (59%) but higher specificity (92%). Conclusions: This review has demonstrated that cell-free nucleic acids have the potential to serve as useful diagnostic markers for GC. Given that both cfRNA and cfDNA markers have shown promising diagnostic performance for GC, the combination of the two may potentially enhance diagnostic efficiency.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Haixin Yu
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Liu
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
5
|
Eritja À, Caus M, Belmonte T, de Gonzalo-Calvo D, García-Carrasco A, Martinez A, Martínez M, Bozic M. microRNA Expression Profile in Obesity-Induced Kidney Disease Driven by High-Fat Diet in Mice. Nutrients 2024; 16:691. [PMID: 38474819 DOI: 10.3390/nu16050691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Obesity is one of the main causes of chronic kidney disease; however, the precise molecular mechanisms leading to the onset of kidney injury and dysfunction in obesity-associated nephropathy remain unclear. The present study aimed to unveil the kidney microRNA (miRNA) expression profile in a model of obesity-induced kidney disease in C57BL/6J mice using next-generation sequencing (NGS) analysis. High-fat diet (HFD)-induced obesity led to notable structural alterations in tubular and glomerular regions of the kidney, increased renal expression of proinflammatory and profibrotic genes, as well as an elevated renal expression of genes involved in cellular lipid metabolism. The miRNA sequencing analysis identified a set of nine miRNAs differentially expressed in the kidney upon HFD feeding, with miR-5099, miR-551b-3p, miR-223-3p, miR-146a-3p and miR-21a-3p showing the most significant differential expression between standard diet (STD) and HFD mice. A validation analysis showed that the expression levels of miR-5099, miR-551b-3p and miR-146a-3p were consistent with NGS results, while Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses revealed that these three validated miRNAs modulated target genes involved in metabolic and adipocytokine pathways, fatty acid and lipid metabolism, and inflammatory, senescence and profibrotic pathways. Our results suggest that differentially expressed miRNAs play pivotal roles in the intricate pathophysiology of obesity-associated kidney disease and could potentially create novel treatment strategies to counteract the deleterious effects of obesity on kidney function.
Collapse
Affiliation(s)
- Àuria Eritja
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Maite Caus
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Thalia Belmonte
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Alicia García-Carrasco
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Ana Martinez
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Montserrat Martínez
- Biostatistics Unit (Biostat), Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Milica Bozic
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| |
Collapse
|
6
|
Wang LJ, Qiu BQ, Yuan MM, Zou HX, Gong CW, Huang H, Lai SQ, Liu JC. Identification and Validation of Dilated Cardiomyopathy-Related Genes via Bioinformatics Analysis. Int J Gen Med 2022; 15:3663-3676. [PMID: 35411175 PMCID: PMC8994656 DOI: 10.2147/ijgm.s350954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/24/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose Dilated cardiomyopathy (DCM) is a type of cardiomyopathy that can easily cause heart failure and has a high mortality rate. Therefore, there is an urgent need to study the underlying mechanism of action of dilated cardiomyopathy. In the present study, we aimed to explore potential miRNA–mRNA pairs and drugs related to DCM. Methods The Microarray data were collected from the Gene Expression Omnibus (GEO) database. Bioinformatics analysis differentially expressed miRNAs and mRNAs in each microarray were obtained. The target genes of miRNAs were obtained from the miRWalk 2.0 database, and the intersection of these two gene sets (miRNA target genes and differentially expressed mRNAs in the microarray) was obtained. Pathway and Gene Ontology (GO) enrichment analyses were performed in the KOBAS database. Cytoscape software was used to construct the miRNA–mRNA network, and the final hub genes were obtained. Furthermore, we predicted several candidate drugs related to hub genes using DSigDB database. To confirm the abnormal expression of hub genes, qRT-PCR was performed. Results In total, eight differentially expressed miRNAs and 92 differentially expressed mRNAs were identified. In addition, 47 differentially expressed miRNA target genes were identified. According to the analysis results of the miRNA-mRNA network, we identified hsa-miR-551b-3p, hsa-miR-770-5p, hsa-miR-363-3p, PIK3R1, DDIT4, and CXCR4 as hub genes in DCM. Several candidate drugs, which are related to the hug genes, were identified. Conclusion In conclusion, in our study, we identified several hub genes that may be involved in the pathogenesis of DCM. Several drugs related to these hub genes may be used as clinical therapeutic candidates.
Collapse
Affiliation(s)
- Li-Jun Wang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Bai-Quan Qiu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Ming-Ming Yuan
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Hua-Xi Zou
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Cheng-Wu Gong
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Huang Huang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Song-Qing Lai
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Song-Qing Lai, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China, Tel +86 13699562160, Email
| | - Ji-Chun Liu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Correspondence: Ji-Chun Liu, Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China, Tel +86 13907913502, Email
| |
Collapse
|
7
|
Wang Q, Mu L, Xi H, Zhang C, Yuan J, Zhu M, Li M. Upregulated miRNA-543 promotes the proliferation and migration of gastric carcinoma by downregulating KLF6. Am J Transl Res 2020; 12:5789-5796. [PMID: 33042458 PMCID: PMC7540122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
This study aims to uncover the potential function of MicroRNA-543 (miRNA-543) in the pathogenesis of gastric carcinoma and the possible mechanism. MiRNA-543 levels in gastric carcinoma tissues and cell lines were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Regulatory effects of miRNA-543 on proliferative and migratory abilities of AGS and MKN45 cells were assessed. The downstream target of miRNA-543 was predicted by online bioinformatics and verified by dual-luciferase reporter gene assay. At last, rescue experiments were carried out to uncover the interaction between miRNA-543 and Krüppel-like factor 6 (KLF6) in the progression of gastric carcinoma. MiRNA-543 was upregulated in gastric carcinoma tissues and cell lines. Particularly, gastric carcinoma patients with advanced stage or positive metastasis expressed higher abundance of miRNA-543. Overexpression of miRNA-543 promoted proliferative ability in gastric carcinoma, manifesting as increased viability, EdU-positive ratio and migratory cell number in AGS and MKN45 cells. KLF6 was proved to be the downstream target of miRNA-543. Both mRNA and protein levels of KLF6 were negatively regulated by miRNA-543 in gastric carcinoma cells. Silence of KLF6 was able to reverse the regulatory effects of miRNA-543 inhibitor on proliferative and migratory abilities in gastric carcinoma. MiRNA-543 is highly expressed in gastric carcinoma. It accelerates gastric carcinoma cells to proliferate and migrate by negatively regulating KLF6 level.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Pathology, The First Medical Centre, Chinese PLA General HospitalBeijing, China
| | - Lihua Mu
- Department of Clinical Pharmacology, The First Medical Centre, Chinese PLA General HospitalBeijing, China
| | - Hongqing Xi
- Department of General Surgery, The First Medical Centre, Chinese PLA General HospitalBeijing, China
| | - Chunyan Zhang
- Birth Defects Prevention and Control Technology Research Center, Chinese PLA General HospitalBeijing, China
| | - Jing Yuan
- Department of Pathology, The First Medical Centre, Chinese PLA General HospitalBeijing, China
| | - Min Zhu
- Department of Oncology, The Fifth Medical Centre, Chinese PLA General HospitalBeijing, China
| | - Mingyang Li
- Department of Gastrointestinal, The First Medical Centre, Chinese PLA General HospitalBeijing, China
| |
Collapse
|
8
|
An Y, Zhang J, Cheng X, Li B, Tian Y, Zhang X, Zhao F. miR-454 suppresses the proliferation and invasion of ovarian cancer by targeting E2F6. Cancer Cell Int 2020; 20:237. [PMID: 32536825 PMCID: PMC7291497 DOI: 10.1186/s12935-020-01300-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Background The aberrant expression of microRNA-454 (miR-454) has been confirmed to be involved in the development of cancers. However, the functional role of miR-454 in the progression of ovarian cancer remains unclear. Methods The expression of miR-454 in ovarian cancer cells and serum of ovarian cancer patients was detected by RT-PCR. CCK8, colony formation, transwell, and flow cytometry assays were conducted to assess the effects of miR-454 on ovarian cancer cell proliferation, migration, invasion, and apoptosis, respectively. Dual-luciferase reporter assay was used to confirm the targeting relationship between miR-454 and E2F6. The expression pattern of E2F6 in ovarian cancer tissues was detected using immunohistochemistry (IHC) assay. The relative expression of related proteins was examined using western blot analysis. Results miR-454 was markedly down-regulated by hypoxia in ovarian cancer cells. Compared with normal samples, the expression of miR-454 was up-regulated in the serum of ovarian cancer patients, and correlated with the clinicopathological stages of ovarian cancer. Next, we found that miR-454 overexpression inhibited the proliferation, migration and invasion of OVCAR3 and SKOV3 cells, as well as promoted apoptosis. In addition, the Akt/mTOR and Wnt/β-catenin signaling pathway were inhibited by miR-454 in ovarian cancer cells. Mechanically, bioinformatic analysis and dual-luciferase reporter assay confirmed that E2F6 was a direct target of miR-454 and negatively regulated by miR-454 in ovarian cancer cells. Moreover, IHC analysis showed that E2F6 was highly expressed in ovarian cancer tissues. Finally, we found that the increasing cell proliferation and migration triggered by E2F6 overexpression were abolished by miR-454 overexpression. Conclusion Taken together, these results highlight the role of miR-454 as a tumor suppressor in ovarian cancer cells by targeting E2F6, indicating that miR-454 may be a potential diagnostic biomarker and therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Yunhe An
- Department of Biotechnology, Beijing Center for Physical and Chemical Analysis, No. 27 Xisanhuan North Road, Beijing, 100089 China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029 China
| | - Xiaoyan Cheng
- Department of Biotechnology, Beijing Center for Physical and Chemical Analysis, No. 27 Xisanhuan North Road, Beijing, 100089 China
| | - Baoming Li
- Department of Biotechnology, Beijing Center for Physical and Chemical Analysis, No. 27 Xisanhuan North Road, Beijing, 100089 China
| | - Yanjie Tian
- Department of Biotechnology, Beijing Center for Physical and Chemical Analysis, No. 27 Xisanhuan North Road, Beijing, 100089 China
| | - Xiaoli Zhang
- Department of Biotechnology, Beijing Center for Physical and Chemical Analysis, No. 27 Xisanhuan North Road, Beijing, 100089 China
| | - Fangqi Zhao
- Department of Obstetrics and Gynecology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029 China
| |
Collapse
|
9
|
Niu Z, Zheng H, Li Z, Su L, Zhao J, Sun Q. Downregulation of MicroRNA-551b Correlates With Dissemination of Human Oral Squamous Cell Carcinoma. J Oral Maxillofac Surg 2020; 78:1538-1545. [PMID: 32376241 DOI: 10.1016/j.joms.2020.03.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE Altered expression of microRNAs contributes to invasion and metastasis of many human cancers; however, the importance of microRNAs in head and neck cancers remains to be elucidated. In this study, we examined whether altered microRNA (miR)-551b expression correlated with invasive phenotypes of human oral squamous cell carcinoma (OSCC) in vivo and in vitro. MATERIALS AND METHODS Real-time polymerase chain reaction was used to detect the expression level of miR-551b in 71 OSCC tissues with lymph node metastasis and 50 nonmetastatic OSCC tissues. We also constructed miR-551b mimic-transfected cell lines HN4 and HN12. The effects of overexpressing miR-551b on the proliferation, migration, and invasion of OSCC cells were examined using Cell Counting Kit 8 (Dojindo, Kumamoto, Japan), plate clone formation, wound healing, and Transwell invasion experiments (Corning, Corning, NY). The association between clinical pathologic parameters and the expression level of miR-551b was analyzed using Kaplan-Meier survival analysis. RESULTS The expression of miR-551b measured 0.33 ± 0.11 in the 71 OSCC tissues with lymph node metastasis versus 0.54 ± 0.06 in the 50 tissues with non-lymph node metastasis (P = .021). Regarding OSCC patients, the expression of miR-551b negatively correlated with patients' overall survival (P = .035). The ectopic expression of miR-551b inhibited the invasion and migration of OSCC cells. CONCLUSIONS This is the first report showing that reduced miR-551b expression may be an event leading to OSCC invasion and metastasis.
Collapse
Affiliation(s)
- Zhixing Niu
- Resident, Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; and Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongyu Zheng
- Resident, Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zixuan Li
- Resident, Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Su
- Associate Professor, Radiology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junfang Zhao
- Associate Professor, Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiang Sun
- Associate Professor, Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
10
|
Lapitz A, Arbelaiz A, O’Rourke CJ, Lavin JL, La Casta A, Ibarra C, Jimeno JP, Santos-Laso A, Izquierdo-Sanchez L, Krawczyk M, Perugorria MJ, Jimenez-Aguero R, Sanchez-Campos A, Riaño I, Gónzalez E, Lammert F, Marzioni M, Macias RI, Marin JJ, Karlsen TH, Bujanda L, Falcón-Pérez JM, Andersen JB, Aransay AM, Rodrigues PM, Banales JM. Patients with Cholangiocarcinoma Present Specific RNA Profiles in Serum and Urine Extracellular Vesicles Mirroring the Tumor Expression: Novel Liquid Biopsy Biomarkers for Disease Diagnosis. Cells 2020; 9:721. [PMID: 32183400 PMCID: PMC7140677 DOI: 10.3390/cells9030721] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
: Cholangiocarcinoma (CCA) comprises a group of heterogeneous biliary cancers with dismal prognosis. The etiologies of most CCAs are unknown, but primary sclerosing cholangitis (PSC) is a risk factor. Non-invasive diagnosis of CCA is challenging and accurate biomarkers are lacking. We aimed to characterize the transcriptomic profile of serum and urine extracellular vesicles (EVs) from patients with CCA, PSC, ulcerative colitis (UC), and healthy individuals. Serum and urine EVs were isolated by serial ultracentrifugations and characterized by nanoparticle tracking analysis, transmission electron microscopy, and immunoblotting. EVs transcriptome was determined by Illumina gene expression array [messenger RNAs (mRNA) and non-coding RNAs (ncRNAs)]. Differential RNA profiles were found in serum and urine EVs from patients with CCA compared to control groups (disease and healthy), showing high diagnostic capacity. The comparison of the mRNA profiles of serum or urine EVs from patients with CCA with the transcriptome of tumor tissues from two cohorts of patients, CCA cells in vitro, and CCA cells-derived EVs, identified 105 and 39 commonly-altered transcripts, respectively. Gene ontology analysis indicated that most commonly-altered mRNAs participate in carcinogenic steps. Overall, patients with CCA present specific RNA profiles in EVs mirroring the tumor, and constituting novel promising liquid biopsy biomarkers.
Collapse
Affiliation(s)
- Ainhoa Lapitz
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (A.L.); (A.A.); (A.L.C.); (A.S.-L.); (L.I.-S.); (M.J.P.); (R.J.-A.); (I.R.); (L.B.)
| | - Ander Arbelaiz
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (A.L.); (A.A.); (A.L.C.); (A.S.-L.); (L.I.-S.); (M.J.P.); (R.J.-A.); (I.R.); (L.B.)
| | - Colm J. O’Rourke
- Department of Health and Medical Sciences, Biotech Research & Innovation Centre (BRIC), 2200 Copenhagen, Denmark; (C.J.O.); (J.B.A.)
| | - Jose L. Lavin
- CIC bioGUNE, Genome Analysis Platform, 48160 Derio, Spain; (J.L.L.); (A.M.A.)
| | - Adelaida La Casta
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (A.L.); (A.A.); (A.L.C.); (A.S.-L.); (L.I.-S.); (M.J.P.); (R.J.-A.); (I.R.); (L.B.)
| | - Cesar Ibarra
- Hospital of Cruces, 48903 Bilbao, Spain; (C.I.); (A.S.-C.)
| | - Juan P. Jimeno
- “Complejo Hospitalario de Navarra”, 31008 Pamplona, Spain;
| | - Alvaro Santos-Laso
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (A.L.); (A.A.); (A.L.C.); (A.S.-L.); (L.I.-S.); (M.J.P.); (R.J.-A.); (I.R.); (L.B.)
| | - Laura Izquierdo-Sanchez
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (A.L.); (A.A.); (A.L.C.); (A.S.-L.); (L.I.-S.); (M.J.P.); (R.J.-A.); (I.R.); (L.B.)
- Carlos III National Institute of Health, Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), 28220 Madrid, Spain;
| | - Marcin Krawczyk
- Department of Medicine II, Saarland University Medical Centre, Saarland University, 66421 Homburg, Germany; (M.K.); (F.L.)
- Department of General, Transplant and Liver Surgery, Laboratory of Metabolic Liver Diseases, Centre for Preclinical Research, 02-091 Warsaw, Poland
| | - Maria J. Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (A.L.); (A.A.); (A.L.C.); (A.S.-L.); (L.I.-S.); (M.J.P.); (R.J.-A.); (I.R.); (L.B.)
- Carlos III National Institute of Health, Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), 28220 Madrid, Spain;
| | - Raul Jimenez-Aguero
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (A.L.); (A.A.); (A.L.C.); (A.S.-L.); (L.I.-S.); (M.J.P.); (R.J.-A.); (I.R.); (L.B.)
| | | | - Ioana Riaño
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (A.L.); (A.A.); (A.L.C.); (A.S.-L.); (L.I.-S.); (M.J.P.); (R.J.-A.); (I.R.); (L.B.)
| | - Esperanza Gónzalez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Exosomes Laboratory, 48160 Derio, Spain;
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Centre, Saarland University, 66421 Homburg, Germany; (M.K.); (F.L.)
| | - Marco Marzioni
- Department of Gastroenterology, “Università Politecnica delle Marche”, 60121 Ancona, Italy;
| | - Rocio I.R. Macias
- Carlos III National Institute of Health, Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), 28220 Madrid, Spain;
- Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain; (R.I.R.M.); (J.J.G.M.)
| | - Jose J.G. Marin
- Carlos III National Institute of Health, Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), 28220 Madrid, Spain;
- Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain; (R.I.R.M.); (J.J.G.M.)
| | - Tom H. Karlsen
- Division of Cancer Medicine, Surgery and Transplantation, Norwegian PSC Research Center, Oslo University Hospital, 0372 Oslo, Spain;
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (A.L.); (A.A.); (A.L.C.); (A.S.-L.); (L.I.-S.); (M.J.P.); (R.J.-A.); (I.R.); (L.B.)
- Carlos III National Institute of Health, Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), 28220 Madrid, Spain;
| | - Juan M. Falcón-Pérez
- Carlos III National Institute of Health, Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), 28220 Madrid, Spain;
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Exosomes Laboratory, 48160 Derio, Spain;
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Jesper B. Andersen
- Department of Health and Medical Sciences, Biotech Research & Innovation Centre (BRIC), 2200 Copenhagen, Denmark; (C.J.O.); (J.B.A.)
| | - Ana M. Aransay
- CIC bioGUNE, Genome Analysis Platform, 48160 Derio, Spain; (J.L.L.); (A.M.A.)
- Carlos III National Institute of Health, Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), 28220 Madrid, Spain;
| | - Pedro M. Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (A.L.); (A.A.); (A.L.C.); (A.S.-L.); (L.I.-S.); (M.J.P.); (R.J.-A.); (I.R.); (L.B.)
| | - Jesus M. Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (A.L.); (A.A.); (A.L.C.); (A.S.-L.); (L.I.-S.); (M.J.P.); (R.J.-A.); (I.R.); (L.B.)
- Carlos III National Institute of Health, Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), 28220 Madrid, Spain;
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
11
|
Ashrafizadeh M, Ahmadi Z, Farkhondeh T, Samarghandian S. Anti-tumor Activity of Propofol: A Focus on MicroRNAs. Curr Cancer Drug Targets 2020; 20:104-114. [PMID: 31657687 DOI: 10.2174/1568009619666191023100046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/02/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND MicroRNAs are endogenous, short, non-coding RNAs with the length as low as 20 to 25 nucleotides. These RNAs are able to negatively affect the gene expression at the post-transcriptional level. It has been demonstrated that microRNAs play a significant role in cell proliferation, cell migration, cell death, cell differentiation, infection, immune response, and metabolism. Besides, the dysfunction of microRNAs has been observed in a variety of cancers. So, modulation of microRNAs is of interest in the treatment of disorders. OBJECTIVE The aim of the current review is to investigate the modulatory effect of propofol on microRNAs in cancer therapy. METHODS This review was performed at PubMed, SCOPUS and Web of Science data-bases using keywords "propofol', "microRNA", "cancer therapy", "propofol + microRNA" and "propofol + miR". RESULTS It was found that propofol dually down-regulates/upregulates microRNAs to exert its antitumor activity. In terms of oncogenesis microRNAs, propofol exert an inhibitory effect, while propofol significantly enhances the expression of oncosuppressor microRNAs. CONCLUSION It seems that propofol is a potential modulator of microRNAs and this capability can be used in the treatment of various cancers.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Veterinary Medicine Faculty, Shushtar University, Khuzestan, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|