1
|
Pálmai N, Széplaki NÁ, Molnár B, Smits H, Krejci R, Kiss I. Non-Compromised Efficacy of the First Commercial Ready-to-Use Genotype 2d Porcine Circovirus Type 2 and Mycoplasma hyopneumoniae Vaccine. Viruses 2025; 17:554. [PMID: 40284997 PMCID: PMC12030859 DOI: 10.3390/v17040554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/11/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Mycoplasma hyopneumoniae (Mhyo) and porcine circovirus type 2 (PCV2) are critical pathogens in the swine industry, both contributing significantly to the porcine respiratory disease complex (PRDC). Given their impact, it is logical to control these pathogens simultaneously. Consequently, combined vaccinations against Mhyo and PCV2 are gaining popularity in swine health management. We present the efficacy of the first commercial combined vaccine prepared of a genotype PCV2d strain and Mhyo and tested against experimental challenge infections with target pathogens in comparative trials with other commercial products. In these studies, three-week-old piglets were vaccinated according to the manufacturers' instructions. Five weeks later, they were challenged with two Mhyo strains over three consecutive days or with a PCV2d strain once. Positive controls included challenged pigs without prior vaccination, while non-vaccinated/non-challenged pigs served as negative controls. The key parameters measured were lung lesion scores and seroconversion for Mhyo, and viraemia, rectal shedding, lymph node and lung viral content, and seroconversion for PCV2. Findings and conclusion: The results showed no compromising effects between the vaccine components and highlighted significant differences in efficacy among the various products tested. Additionally, oral fluid sampling demonstrated a strong correlation with the viraemia and fecal shedding of PCV2, underscoring the diagnostic and animal welfare benefits of this sampling method.
Collapse
Affiliation(s)
- Nimród Pálmai
- Scientific Support and Investigation Unit, Ceva-Phylaxia, 1107 Budapest, Hungary;
| | | | | | - Han Smits
- Ceva Animal Health, 33500 Libourne, France; (H.S.); (R.K.)
| | - Roman Krejci
- Ceva Animal Health, 33500 Libourne, France; (H.S.); (R.K.)
| | - István Kiss
- Scientific Support and Investigation Unit, Ceva-Phylaxia, 1107 Budapest, Hungary;
| |
Collapse
|
2
|
Wenbo L, Liangyu X, Zhiyong L, Gongchang Y, Yuanzhen C, Bin S. Status and trends of RGS16 based on data visualization analysis: A review. Medicine (Baltimore) 2024; 103:e36981. [PMID: 38363937 PMCID: PMC10869050 DOI: 10.1097/md.0000000000036981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/22/2023] [Indexed: 02/18/2024] Open
Abstract
G-protein signaling regulator 16 (RGS16) has been confirmed that RGS16 is associated with cancer, neurodegenerative diseases, and cardiovascular diseases. Moreover, many studies have shown that RGS16 can be used as a biomarker for cancer diagnosis and prognosis. We used CiteSpace and VOS viewer software to perform a bibliometric analysis of 290 publications in the core collection of Web of Science. All the articles come from 399 institutions, including 618 authors, 179 journals, 40 countries, 115 keywords, 1 language, two types of papers, and reviews. The United States has the largest number of publications. The Research Center of Allergy and Infectious Diseases (NIAID) publishes the most papers, Emory University is the most recent of all institutions with the most recent results in the RGS16 study. Cell biology is the most studied discipline, and the most studied topic is migration. Drury published RGS16-related articles with the most citations (n = 15), and Berman published articles with the most citations (n = 106). The biological applications of RGS16 are currently a hot area of RGS16 research, including inflammation, cancer, ulcerative colitis, metabolic acidosis, platelet activation, and thrombosis. The current scientometrics study provides an overview of RGS16 research from 1995 to 2022. This study provides an overview of current and potential future research hotspots in the field of RGS16 and can be used as a resource for interested researchers.
Collapse
Affiliation(s)
- Liu Wenbo
- Bone Biomechanics Engineering Laboratory of Shandong Province, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xie Liangyu
- Bone Biomechanics Engineering Laboratory of Shandong Province, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Lu Zhiyong
- Bone Biomechanics Engineering Laboratory of Shandong Province, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yu Gongchang
- Bone Biomechanics Engineering Laboratory of Shandong Province, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Chen Yuanzhen
- Bone Biomechanics Engineering Laboratory of Shandong Province, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shi Bin
- Bone Biomechanics Engineering Laboratory of Shandong Province, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Shandong Traditional Chinese Medicine University, Jinan, Shandong Province, China
| |
Collapse
|
3
|
Tian M, Ma Y, Li T, Wu N, Li J, Jia H, Yan M, Wang W, Bian H, Tan X, Qi J. Functions of regulators of G protein signaling 16 in immunity, inflammation, and other diseases. Front Mol Biosci 2022; 9:962321. [PMID: 36120550 PMCID: PMC9478547 DOI: 10.3389/fmolb.2022.962321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Regulators of G protein signaling (RGS) act as guanosine triphosphatase activating proteins to accelerate guanosine triphosphate hydrolysis of the G protein α subunit, leading to the termination of the G protein-coupled receptor (GPCR) downstream signaling pathway. RGS16, which is expressed in a number of cells and tissues, belongs to one of the small B/R4 subfamilies of RGS proteins and consists of a conserved RGS structural domain with short, disordered amino- and carboxy-terminal extensions and an α-helix that classically binds and de-activates heterotrimeric G proteins. However, with the deepening of research, it has been revealed that RGS16 protein not only regulates the classical GPCR pathway, but also affects immune, inflammatory, tumor and metabolic processes through other signaling pathways including the mitogen-activated protein kinase, phosphoinositide 3-kinase/protein kinase B, Ras homolog family member A and stromal cell-derived factor 1/C-X-C motif chemokine receptor 4 pathways. Additionally, the RGS16 protein may be involved in the Hepatitis B Virus -induced inflammatory response. Therefore, given the continuous expansion of knowledge regarding its role and mechanism, the structure, characteristics, regulatory mechanisms and known functions of the small RGS proteinRGS16 are reviewed in this paper to prepare for diagnosis, treatment, and prognostic evaluation of different diseases such as inflammation, tumor, and metabolic disorders and to better study its function in other diseases.
Collapse
Affiliation(s)
- Miaomiao Tian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yan Ma
- Zibo Central Hospital, Zibo, China
| | - Tao Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Nijin Wu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiaqi Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Huimin Jia
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Meizhu Yan
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wenwen Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongjun Bian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xu Tan
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Jianni Qi, ; Xu Tan,
| | - Jianni Qi
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China
- *Correspondence: Jianni Qi, ; Xu Tan,
| |
Collapse
|