1
|
Mahbubi Sani M, Pradnyan Kloping Y, Surahmad F. Benign prostatic hyperplasia genetic variants in Asians. Clin Chim Acta 2025; 565:119986. [PMID: 39368687 DOI: 10.1016/j.cca.2024.119986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
The global prevalence of benign prostatic hyperplasia (BPH) is increasing annually, with a notably higher incidence in Asian populations. This condition can increase the risk of developing prostate cancer 2- to 12-fold, underscoring the critical need for comprehensive clinical guidelines and appropriate risk stratification testing. This review is the first to address the gap by focusing on genetic screening for risk stratification in Asians, followed by the development of pathophysiology based on the genetic variants identified. For example, the CYP17 gene, which plays a crucial role in testosterone synthesis and BPH progression, includes the CYP17 rs743572 C allele, a genetic variant that increases the risk of BPH by 1.58 times in Asians. Identifying such genetic variants can enable the tailoring of therapies to individual genetic profiles. Furthermore, this review provides new insights into the pathophysiology of BPH, suggesting that ethnicity may play a role in its progression, and explores genetic links between BPH and other diseases traditionally considered risk factors for BPH.
Collapse
Affiliation(s)
- Muhammad Mahbubi Sani
- Faculty of Medicine, University of Surabaya, Surabaya 60292, Indonesia; Department of Urology, Jombang General Hospital, Jombang 61416, Indonesia.
| | | | - Fakhri Surahmad
- Department of Urology, Faculty of Medicine, Universitas Airlangga, Surabaya 60115, Indonesia; Department of Urology, Jombang General Hospital, Jombang 61416, Indonesia
| |
Collapse
|
2
|
Kyoda Y, Shibamori K, Shindo T, Maehana T, Hashimoto K, Kobayashi K, Tanaka T, Fukuta F, Masumori N. Intrinsic and extrinsic factors causing hyperplasia of the prostate. Int J Urol 2024; 31:705-717. [PMID: 38462732 PMCID: PMC11524118 DOI: 10.1111/iju.15446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
Prostatic hyperplasia is very common in elderly men and is a typical disease that reduces quality of life. Histologically, hyperplasia of the prostate gland causes obstruction at the bladder outlet, resulting in symptoms such as a weak urine stream. Various factors have been considered to cause histological enlargement of the prostate, but the underlying cause is still unknown. The factors that cause prostate hyperplasia can be broadly classified into intrinsic and extrinsic ones. Extrinsic factors include things that we directly come into contact with such as bacteria and food. On the other hand, intrinsic factors are those that cause changes in functions originally provided in the body due to some cause, including extrinsic factors, such as chronic inflammation and an imbalance of sex hormones. A large number of reports have been made to date regarding the etiology of prostatic hyperplasia, although they have not yet clarified the fundamental cause(s). The various factors currently known should be outlined for future research. Should it be possible to prevent this highly prevalent prostatic hyperplasia which is mainly cause of dcreasing quality of life, there is no doubt that it would be a huge contribution to humanity.
Collapse
Affiliation(s)
- Yuki Kyoda
- Department of UrologySapporo Medical University School of MedicineSapporoJapan
| | - Kosuke Shibamori
- Department of UrologySapporo Medical University School of MedicineSapporoJapan
| | - Tetsuya Shindo
- Department of UrologySapporo Medical University School of MedicineSapporoJapan
| | - Takeshi Maehana
- Department of UrologySapporo Medical University School of MedicineSapporoJapan
| | - Kohei Hashimoto
- Department of UrologySapporo Medical University School of MedicineSapporoJapan
| | - Ko Kobayashi
- Department of UrologySapporo Medical University School of MedicineSapporoJapan
| | - Toshiaki Tanaka
- Department of UrologySapporo Medical University School of MedicineSapporoJapan
| | - Fumimasa Fukuta
- Department of UrologySteel Memorial Muroran HospitalMuroranJapan
| | - Naoya Masumori
- Department of UrologySapporo Medical University School of MedicineSapporoJapan
| |
Collapse
|
3
|
Yang C, Zhao J, Lin C, Gao Y, Luo J, He F, Fang Z, Li Z, Ran Q, Yang Z. Inhibition of integrin receptors reduces extracellular matrix levels, ameliorating benign prostate hyperplasia. Int J Biol Macromol 2023; 253:126499. [PMID: 37659484 DOI: 10.1016/j.ijbiomac.2023.126499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/26/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023]
Abstract
Although a high prevalence of benign prostate hyperplasia (BPH) has been documented, the risk factors are poorly understood. Metabolic syndrome increases the risk of BPH. Succinylation, a type of posttranslational modification, mostly targets metabolic processes. The level of succinylation was investigated in 4 BPH patients and 4 healthy controls. Additionally, 176 patients with BPH were analyzed by using pan-antisuccinyllysine antibody blotting. TMT-labeling proteomic and sc-RNAseq Cellchat analyses were employed to identify key signaling factors involved in the development of BPH. In vivo and in vitro experiments were used to confirm the role of integrin receptors. The global succinylation level in BPH was higher than that in the healthy prostate. Positive correlations of prostate volume with IHC score sand urodynamics testing were found in large clinical cohorts. The extracellular matrix (ECM), metabolic processes and immune signaling were involved in succinylation in BPH, as indicated by using TMT-labeling proteomic analysis, and this finding was also confirmed by sc-RNAseq CellChat analysis. The proteins upregulated in SIRT5 knockout WPMY-1 cells were also enriched in the extracellular matrix and metabolic processes. More importantly, integrin receptor inhibition in a mouse model of BPH significantly ameliorated prostate hyperplasia. High levels of succinylation modifications were found in BPH, and succinylated proteins influenced the activation of the ECM. Inhibition of ECM signaling further ameliorated prostate hyperplasia in mice.
Collapse
Affiliation(s)
- Chengfei Yang
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China; Department of Thoracic Surgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jiang Zhao
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Chuanchuan Lin
- Department of Blood Transfusion, Irradiation Biology Laboratory, Army Medical University, Chongqing, China
| | - Ye Gao
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jing Luo
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China; Department of urology, General Hospital of Xinjiang Military Command, Urumqi, Xinjiang, PR China
| | - Fan He
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zhenqiang Fang
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zhongjun Li
- Department of Blood Transfusion, Irradiation Biology Laboratory, Army Medical University, Chongqing, China.
| | - Qian Ran
- Department of Blood Transfusion, Irradiation Biology Laboratory, Army Medical University, Chongqing, China.
| | - Zhenxing Yang
- Department of Blood Transfusion, Irradiation Biology Laboratory, Army Medical University, Chongqing, China; Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
4
|
Aminmalek M, Mashayekhi F, Salehi Z. Epidermal growth factor +61A/G (rs4444903) promoter polymorphism and serum levels are linked to idiopathic male infertility. Br J Biomed Sci 2020; 78:92-94. [PMID: 32448090 DOI: 10.1080/09674845.2020.1774034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- M Aminmalek
- Faculty of Biological Sciences, Azad University, Tonekabon Branch , Tonekabon, Iran
| | - F Mashayekhi
- Department of Biology, Faculty of Sciences, University of Guilan , Rasht, Iran
| | - Z Salehi
- Department of Biology, Faculty of Sciences, University of Guilan , Rasht, Iran
| |
Collapse
|
5
|
Kim BW, Kim SK, Heo KW, Bae KB, Jeong KH, Lee SH, Kim TH, Kim YH, Kang SW. Association between epidermal growth factor (EGF) and EGF receptor gene polymorphisms and end-stage renal disease and acute renal allograft rejection in a Korean population. Ren Fail 2020; 42:98-106. [PMID: 31906817 PMCID: PMC6968622 DOI: 10.1080/0886022x.2019.1710535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose Epidermal growth factor (EGF) has been found to be associated with the development and repair mechanisms of several renal diseases. In this study, we hypothesized that single nucleotide polymorphisms (SNPs) in EGF or its receptor genes might have an association with end-stage renal disease (ESRD) or acute renal allograft rejection (AR) in a Korean population. Methods Three-hundred and forty seven recipients of the first renal transplants for ESRD, including 63 AR patients along with 289 healthy adults were included in the study. Five EGF gene SNPs (rs11568835, rs11568943, rs2237051, rs11569017, and rs3756261) and four EGFR gene SNPs (rs1140475, rs2293347, rs1050171, and rs6965469) were analyzed. The genotypes of these SNPs were analyzed using the AxiomTM genome-wide human assay. Statistical analysis was performed using SNPStats and Haploview version 4.2 software. Multiple logistic regression models (codominant, dominant, recessive, and Log-additive) were used to estimate the odds ratio (OR), 95% confidence interval (CI), and P value. Results One SNP (rs11569017) in the EGF gene showed significant association with ESRD but not with AR. Another SNP (rs11568835) in the EGF gene showed significant association with susceptibility to AR but not with ESRD. One SNP (rs1050171) in the EGFR gene showed significant association with susceptibility to AR but not with ESRD. Conclusion Our findings suggest that SNPs in the EGF and EGFR gene may be associated with the risk of ESRD and AR development in the Korean population.
Collapse
Affiliation(s)
- Byeong Woo Kim
- Department of Internal Medicine, Haeundae Bumin Hospital, Busan, Korea
| | - Su Kang Kim
- Kohwang Medical Research Institute, Kyung Hee University School of Medicine, Seoul, Korea
| | - Kyung Wook Heo
- Department of Otolaryngology, Inje University, Busan, Korea
| | - Ki Beom Bae
- Department of General Surgery, Inje University, Busan, Korea
| | - Kyung Hwan Jeong
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea
| | - Sang Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea
| | - Tae Hee Kim
- Division of Nephrology, Department of Internal Medicine, Inje University, Busan, Korea
| | - Yeong Hoon Kim
- Division of Nephrology, Department of Internal Medicine, Inje University, Busan, Korea
| | - Sun Woo Kang
- Division of Nephrology, Department of Internal Medicine, Inje University, Busan, Korea
| |
Collapse
|
6
|
Kang SW, Kim SK, Park HJ, Chung JH, Ban JY. Human 8-oxoguanine DNA glycosylase gene polymorphism (Ser326Cys) and cancer risk: updated meta-analysis. Oncotarget 2018; 8:44761-44775. [PMID: 28415770 PMCID: PMC5546516 DOI: 10.18632/oncotarget.16226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/03/2017] [Indexed: 01/30/2023] Open
Abstract
Genetic polymorphism of human 8-oxoguanine glycosylase 1 (hOGG1) has been reported to have a relationship with the risk of the development of various cancers. Many studies have described the influence of Ser326Cys polymorphism of the hOGG1 gene on cancer susceptibility. However, the results have remained inconclusive and controversial. Therefore, we performed a meta-analysis to more precisely determine the relationship between the hOGG1 polymorphism and the development of cancer.Electronic databases including PubMed, Embase, Google Scholar, and the Korean Studies Information Service System (KISS) were searched. The odds ratio (OR), 95% confidence interval (CI), and p value were calculated to assess the strength of the association with the risk of cancer using Comprehensive Meta-analysis software (Corporation, NJ, USA). The 127 studies including 38,757 cancer patients and 50,177 control subjects were analyzed for the meta-analysis.Our meta-analysis revealed that G allele of Ser326Cys polymorphism of the hOGG1 gene statistically increased the susceptibility of cancer (all population, OR = 1.092, 95% CI = 1.051-1.134, p < 0.001; in Asian, OR = 1.095, 95% CI = 1.048-1.145, p < 0.001; in Caucasian, OR = 1.097, 95% CI = 1.033-1.179, p = 0.002). Also, other genotype models showed significant association with cancer (p < 0.05, respectively).The present meta-analysis concluded that the G allele was associated with an increased risk of cancer. It suggested that the hOGG1 polymorphism may be a candidate marker of cancer.
Collapse
Affiliation(s)
- Sang Wook Kang
- Department of Dental Pharmacology, School of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Su Kang Kim
- Kohwang Medical Institute, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hae Jeong Park
- Kohwang Medical Institute, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Joo-Ho Chung
- Kohwang Medical Institute, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ju Yeon Ban
- Department of Dental Pharmacology, School of Dentistry, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|