1
|
Anjum I, Nasir A, Naseer F, Ibrahim A, Rehman B, Bashir F, Tul Ain Q. Exploring the anti-inflammatory effects of phytochemicals in attenuating interstitial cystitis-a literature review. Front Pharmacol 2025; 16:1483548. [PMID: 39974737 PMCID: PMC11836544 DOI: 10.3389/fphar.2025.1483548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/07/2025] [Indexed: 02/21/2025] Open
Abstract
Interstitial cystitis is a fierce syndrome affecting the quality of life of thousands of individuals around the globe. It causes immense pain in the bladder and associated viscera along with inflammation-like lesions. The current medicinal and pharmacological research focuses on the protective and curative effects of phytochemicals in several ailments. Phytochemicals derived from many medicinal plants have shown potent outcomes in protection against various pathological conditions including interstitial cystitis. This review has summarized the insights of in vitro and in vivo studies regarding the effects of phytochemicals in fading the inflammation in bladder tissue and exhibiting a protective effect on the urothelium. Hemorrhagic cystitis is a common manifestation in patients undergoing chemotherapy with cyclophosphamide and related alkylating agents. Sodium 2-mercaptoethane sulfonate (Mesna) has traditionally been employed in clinical practice to counter cyclophosphamide-induced cystitis in humans. However, cyclophosphamide has been employed in developing animal models of interstitial cystitis in in vivo studies. Phytochemicals including quercetin, beta-caryophyllene, curcumol, boswellic acid, caftaric acid, some flavonoids and other secondary metabolites being a consequential component of numerous medicinal plants, have displayed a significant reduction in the levels of proinflammatory cytokines including TNF-α, NFĸB, IL-1β, NLRP3 inflammasome, IL-6, IL-2, matrix metalloproteinases etc. Uroprotective outcomes of these phytochemicals have been found to result in diminished oxidative stress and restoration of glutathione, superoxide dismutase, and related proteins in the inflamed bladder tissue. Many in vivo studies involving cyclophosphamide-induced interstitial cystitis have confirmed these findings. The coupling of phytotherapy with novel drug delivery systems such as nanoparticles, liposomes, nanotubes, quantum dots, etc. can help translate these beneficial effects of phytochemicals into clinical practice. Further investigations of these phytochemicals can provide intuition regarding the development of newer drug molecules having exclusive activity for attenuating interstitial cystitis.
Collapse
Affiliation(s)
- Irfan Anjum
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Ayesha Nasir
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Faiza Naseer
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
- Department of Biosciences, Shifa Tameer e Millat University, Islamabad, Pakistan
| | - Ahsan Ibrahim
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Bisma Rehman
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Fawad Bashir
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Qura Tul Ain
- Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| |
Collapse
|
2
|
Lu SH, Yun TF, Kou YR, Chang YP. Preliminary evidence for therapeutic impact of intravesical glucosamine on protamine sulfate and potassium chloride-induced bladder overactivity in rat model. World J Urol 2024; 42:405. [PMID: 38990380 DOI: 10.1007/s00345-024-05100-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/31/2024] [Indexed: 07/12/2024] Open
Abstract
PURPOSE To investigate the protective effect of intravesical glucosamine in treating overactive bladder (OAB). METHODS Ninety-two female Sprague-Dawley (SD) rats were divided into 4 groups i.e. protamine sulfate (PS), N-acetylcysteine (NAC), and glucosamine-treated PS (GPS), and normal saline control (NC) were used. We induced hyperactivity in rats via intravesical infusion of PS and potassium chloride (KCl), whereas the NC group underwent a sustained intravesical saline infusion for 1 h. N-acetylcysteine (NAC), a potential antioxidant as well as anti-inflammatory agent was employed as positive control. Cystometrography (CMG) was then conducted to determine urodynamic parameters, i.e., leak point pressure (LPP, n = 48) and inter-contractile interval, the duration between two voids (ICI, n = 32). RESULTS LPP was significantly elevated in the GPS group (mean ± SD: 110.9 ± 6.2 mmHg) compared to the NC (81.0 ± 32.5 mmHg), PS (40.3 ± 10.9 mmHg), and NAC group (70.3 ± 19.4 mmHg). The cystometrogram data also reveals a prolonged ICI in the GPS group (241.3 ± 40.2 s) compared to the NC group (216.0 ± 41.7 s), PS group (128.8 ± 23.6 s), and NAC group (193.8 ± 28.3 s). CONCLUSION This preliminary study implies the ameliorative impact of GPS treatment on OAB in terms of improved urodynamic parameters, including LPP and ICI.
Collapse
Affiliation(s)
- Shing-Hwa Lu
- Department of Urology, Taipei Medical University Hospital, No. 252, Wu-Xing Street, Taipei, 11031, Taiwan.
- School of Medicine, Department of Urology, Taipei Medical University, Taipei, Taiwan.
- Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Tien-Fu Yun
- Department of Urology, Taipei Medical University Hospital, No. 252, Wu-Xing Street, Taipei, 11031, Taiwan
- School of Medicine, Department of Urology, Taipei Medical University, Taipei, Taiwan
| | - Yu Ru Kou
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yi-Ping Chang
- Department of Healthcare Information and Management, Ming Chuan University, Taoyuan, Taiwan.
- Division of Nephrology, Taoyuan Branch, Taipei Veterans General Hospital, Taoyuan, Taiwan.
| |
Collapse
|
3
|
Kelly RS, Cote MF, Begum S, Lasky-Su J. Pharmacometabolomics of Asthma as a Road Map to Precision Medicine. Handb Exp Pharmacol 2023; 277:247-273. [PMID: 36271166 PMCID: PMC10116407 DOI: 10.1007/164_2022_615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Pharmacometabolomics applies the principles of metabolomics to therapeutics in order to elucidate the biological mechanisms underlying the variation in responses to drugs between groups and individuals. Asthma is associated with broad systemic effects and heterogeneity in treatment response and as such is ideally suited to pharmacometabolomics. In this chapter, we discuss the state of the emerging field of asthma pharmacometabolomics, with a particular focus on studies of steroids, bronchodilators, and leukotriene inhibitors. We also consider those studies concerned with subtyping cases to better understand the pharmacology of those groups and those looking to leverage pharmacometabolomics for asthma prevention. We finish with a discussion of the challenges and opportunities of asthma pharmacometabolomics and reflect upon where this field must go next in order to realize its precision medicine potential.
Collapse
Affiliation(s)
- Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Margaret F Cote
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sofina Begum
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Adegbola SO, Sarafian M, Sahnan K, Ding NS, Faiz OD, Warusavitarne J, Phillips RKS, Tozer PJ, Holmes E, Hart AL. Differences in amino acid and lipid metabolism distinguish Crohn's from idiopathic/cryptoglandular perianal fistulas by tissue metabonomic profiling and may offer clues to underlying pathogenesis. Eur J Gastroenterol Hepatol 2021; 33:1469-1479. [PMID: 33337668 DOI: 10.1097/meg.0000000000001976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Few studies have investigated perianal fistula etiopathogenesis, and although the cryptoglandular theory is widely accepted in idiopathic cases, in Crohn's disease, it is thought to involve the interplay between microbiological, immunological and genetic factors. A pilot study was conducted to assess for metabolic variations in Crohn's perianal fistula tissue that might differ from that of idiopathic (cryptoglandular) perianal fistula tissue as a comparator. The goal was to identify any potential biomarkers of disease, which may improve the understanding of pathogenesis. AIMS AND METHODS Fistula tract biopsies were obtained from 30 patients with idiopathic perianal fistula and 20 patients with Crohn's anal fistula. Two different assays were used in an ultra-high-performance liquid chromatography system coupled with a mass spectrometric detector to achieve broad metabolome coverage. Univariate and multivariate statistical data analyses were used to identify differentiating metabolic features corresponding to the perianal fistula phenotype (i.e. Crohn's disease vs. idiopathic). RESULTS Significant orthogonal partial least squares discriminant analysis predictive models (validated with cross-validated-analysis of variance P value <0.05) differentiated metabolites from tissue samples from Crohn's vs. idiopathic anal fistula patients using both metabolic profiling platforms. A total of 41 metabolites were identified, suggesting alterations in pathways, including amino acid, carnitine and lipid metabolism. CONCLUSION Metabonomics may reveal biomarkers of Crohn's perianal fistula. Further work in larger numbers is required to validate the findings of these studies as well as cross-correlation with microbiome work to better understand the impact of host-gut/environment interactions in the pathophysiology of Crohn's and idiopathic perianal fistulas and identify novel therapeutic targets.
Collapse
Affiliation(s)
- Samuel O Adegbola
- Robin Phillips Fistula Research Unit, St Mark's Hospital and Academic Institute, Harrow, Middlesex
- Department of Surgery and Cancer
| | - Magali Sarafian
- Computational Systems Division, Imperial College London, South Kensington Campus, London, UK
| | - Kapil Sahnan
- Robin Phillips Fistula Research Unit, St Mark's Hospital and Academic Institute, Harrow, Middlesex
- Department of Surgery and Cancer
| | - Nik S Ding
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Australia
| | - Omar D Faiz
- Robin Phillips Fistula Research Unit, St Mark's Hospital and Academic Institute, Harrow, Middlesex
- Department of Surgery and Cancer
| | - Janindra Warusavitarne
- Robin Phillips Fistula Research Unit, St Mark's Hospital and Academic Institute, Harrow, Middlesex
- Department of Surgery and Cancer
| | - Robin K S Phillips
- Robin Phillips Fistula Research Unit, St Mark's Hospital and Academic Institute, Harrow, Middlesex
- Department of Surgery and Cancer
| | - Phil J Tozer
- Robin Phillips Fistula Research Unit, St Mark's Hospital and Academic Institute, Harrow, Middlesex
- Department of Surgery and Cancer
| | - Elaine Holmes
- Computational Systems Division, Imperial College London, South Kensington Campus, London, UK
| | - Ailsa L Hart
- Robin Phillips Fistula Research Unit, St Mark's Hospital and Academic Institute, Harrow, Middlesex
- Department of Surgery and Cancer
| |
Collapse
|
5
|
Lee GB, Kim YB, Lee JC, Moon MH. Optimisation of high-speed lipidome analysis by nanoflow ultrahigh-performance liquid chromatography-tandem mass spectrometry: Application to identify candidate biomarkers for four different cancers. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1175:122739. [PMID: 33991954 DOI: 10.1016/j.jchromb.2021.122739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/07/2021] [Accepted: 04/24/2021] [Indexed: 12/14/2022]
Abstract
Lipid analysis is a powerful tool that can elucidate the pathogenic roles of lipids in metabolic diseases, and facilitate the development of potential biomarkers. Lipid analysis by large-scale lipidomics requires a high-speed and high-throughput analytical platform. In the present study, a high-speed analytical method for lipid analysis using nanoflow ultrahigh-performance liquid chromatography-electrospray ionisation-tandem mass spectrometry (nUHPLC-ESI-MS/MS) was optimised by investigating the effects of column flow rate, pump flow rate, dwell time, initial binary mobile phase composition, and gradient duration on the separation efficiency of standard lipid mixtures. The minimum gradient time for high-speed lipid separation was determined by examining the time-based separation efficiency and spectral overlap of isobaric lipid species during selected reaction monitoring-based quantification of sphingomyelin and a second isotope of phosphatidylcholine, which differ in molecular weight by only 1 Da. Finally, the optimised nUHPLC-ESI-MS/MS method was applied to analyse 200 plasma samples from patients with liver, gastric, lung, and colorectal cancer to evaluate its performance by measuring previously identified candidate lipid biomarkers. About 73% of the reported marker candidates (6 out of 7 in liver, 5/9 in gastric, 4/6 in lung, and 6/7 in colorectal cancer) could be assigned using the optimised method, supporting its use for high-throughput lipid analysis.
Collapse
Affiliation(s)
- Gwang Bin Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seoul 03722, South Korea
| | - Young Beom Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seoul 03722, South Korea
| | - Jong Cheol Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seoul 03722, South Korea
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seoul 03722, South Korea.
| |
Collapse
|
6
|
Shahid M, Yeon A, Kim J. Metabolomic and lipidomic approaches to identify biomarkers for bladder cancer and interstitial cystitis (Review). Mol Med Rep 2020; 22:5003-5011. [PMID: 33174036 PMCID: PMC7646957 DOI: 10.3892/mmr.2020.11627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/18/2020] [Indexed: 12/28/2022] Open
Abstract
The discovery, introduction and clinical use of prognostic and diagnostic biomarkers has significantly improved outcomes for patients with various illnesses, including bladder cancer (BC) and other bladder-related diseases, such as benign bladder dysfunction and interstitial cystitis (IC). Several sensitive and noninvasive clinically relevant biomarkers for BC and IC have been identified. Metabolomic- and lipidomic-based biomarkers have notable clinical potential in improving treatment outcomes for patients with cancer; however, there are also some noted limitations. This review article provides a short and concise summary of the literature on metabolomic and lipidomic biomarkers for BC and IC, focusing on the possible clinical utility of profiling metabolic alterations in BC and IC.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Surgery, Cedars‑Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Austin Yeon
- Department of Surgery, Cedars‑Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jayoung Kim
- Department of Surgery, Cedars‑Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
7
|
Miller JS, Rodriguez-Saona L, Hackshaw KV. Metabolomics in Central Sensitivity Syndromes. Metabolites 2020; 10:E164. [PMID: 32344505 PMCID: PMC7240948 DOI: 10.3390/metabo10040164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/11/2020] [Accepted: 04/19/2020] [Indexed: 01/09/2023] Open
Abstract
Central sensitization syndromes are a collection of frequently painful disorders that contribute to decreased quality of life and increased risk of opiate abuse. Although these disorders cause significant morbidity, they frequently lack reliable diagnostic tests. As such, technologies that can identify key moieties in central sensitization disorders may contribute to the identification of novel therapeutic targets and more precise treatment options. The analysis of small molecules in biological samples through metabolomics has improved greatly and may be the technology needed to identify key moieties in difficult to diagnose diseases. In this review, we discuss the current state of metabolomics as it relates to central sensitization disorders. From initial literature review until Feb 2020, PubMed, Embase, and Scopus were searched for applicable studies. We included cohort studies, case series, and interventional studies of both adults and children affected by central sensitivity syndromes. The majority of metabolomic studies addressing a CSS found significantly altered metabolites that allowed for differentiation of CSS patients from healthy controls. Therefore, the published literature overwhelmingly supports the use of metabolomics in CSS. Further research into these altered metabolites and their respective metabolic pathways may provide more reliable and effective therapeutics for these syndromes.
Collapse
Affiliation(s)
- Joseph S. Miller
- Department of Medicine, Ohio University Heritage College of Osteopathic Medicine, Dublin, OH 43016, USA;
| | - Luis Rodriguez-Saona
- Department of Food Science and Technology, Ohio State University, Columbus, OH 43210, USA;
| | - Kevin V. Hackshaw
- Department of Internal Medicine, Division of Rheumatology, Dell Medical School, The University of Texas, 1701 Trinity St, Austin, TX 78712, USA
| |
Collapse
|
8
|
n-Butylamine for Improving the Efficiency of Untargeted Mass Spectrometry Analysis of Plasma Metabolite Composition. Int J Mol Sci 2019; 20:ijms20235957. [PMID: 31783473 PMCID: PMC6929023 DOI: 10.3390/ijms20235957] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/21/2022] Open
Abstract
A comparative study of the impact of n-butylamine and traditionally used additives (ammonium hydroxide and formic acid) on the efficiency of the electrospray ionization (ESI) process for the enhancement of metabolite coverage was performed by direct injection mass spectrometry (MS) analysis in negative mode. Evaluation of obtained MS data showed that n-butylamine is one of the most effective additives for the analysis of metabolite composition in ESI in negative ion mode (ESI(-)) The limitations of the use of n-butylamine and other alkylamines in the analysis of metabolic composition and a decontamination procedure that can reduce MS device contamination after their application are discussed. The proposed procedure allows the performance of high-sensitivity analysis of low-molecular-weight compounds on the same MS device in both polarities.
Collapse
|
9
|
Lee GB, Lee JC, Moon MH. Plasma lipid profile comparison of five different cancers by nanoflow ultrahigh performance liquid chromatography-tandem mass spectrometry. Anal Chim Acta 2019; 1063:117-126. [DOI: 10.1016/j.aca.2019.02.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/22/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022]
|
10
|
Rao CV. Therapeutic Potential of Human Chorionic Gonadotropin Against Painful Bladder Syndrome/Interstitial Cystitis. Reprod Sci 2016; 23:1451-1458. [PMID: 27004802 DOI: 10.1177/1933719116639139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Painful bladder syndrome/interstitial cystitis is a debilitating chronic bladder disease that primarily affects women. The disease is due to a damage of urothelial cell lining. As a result, potassium particles and other toxic substances in urine can leak into bladder mucosa, causing the symptoms of lower abdominal/pelvic discomfort, pain, increased urination frequency, urgency, nocturia, and so on, all of which can substantially reduce the quality of daily life. There are multiple symptom reliving therapies. Among them, only pentosan polysulfate sodium, sold under the brand name of Elmiron, has been approved for oral use by US Food and Drug Administration. It provides the relief after several months of use. Based on the scientific leads presented in this article, we propose that human chorionic gonadotropin has a therapeutic potential that is worth investigating for the treatment of this disease.
Collapse
Affiliation(s)
- C V Rao
- Departments of Cellular Biology and Pharmacology, Molecular and Human Genetics and Obstetrics and Gynecology, Reproduction and Development Program, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
11
|
Chen Z, Kim J. Urinary proteomics and metabolomics studies to monitor bladder health and urological diseases. BMC Urol 2016; 16:11. [PMID: 27000794 PMCID: PMC4802825 DOI: 10.1186/s12894-016-0129-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/10/2016] [Indexed: 12/16/2022] Open
Abstract
Background Assays of molecular biomarkers in urine are non-invasive compared to other body fluids and can be easily repeated. Based on the hypothesis that the secreted markers from the diseased organs may locally release into the body fluid in the vicinity of the injury, urine-based assays have been considered beneficial to monitoring bladder health and urological diseases. The urine proteome is much less complex than the serum and tissues, but nevertheless can contain biomarkers for diagnosis and prognosis of diseases. The urine metabolome has a much higher number and concentration of low-molecular metabolites than the serum or tissues, with a far lower lipid concentration, yet informs directly about dietary and microbial metabolism. Discussion We here discuss the use of mass spectrometry-based proteomics and metabolomics for urine biomarker assays, specifically with respect to the underlying mechanisms that trigger the pathological condition. Conclusion Molecular biomarker profiles, based on proteomics and metabolomics studies, reliably distinguish patients from healthy controls, stratify sub-populations with respect to treatment options, and predict therapeutic response of patients with urological disease.
Collapse
Affiliation(s)
- Zhaohui Chen
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jayoung Kim
- Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA. .,Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA. .,Department of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Duriez E, Armengaud J, Fenaille F, Ezan E. Mass spectrometry for the detection of bioterrorism agents: from environmental to clinical applications. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:183-199. [PMID: 26956386 DOI: 10.1002/jms.3747] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/14/2015] [Accepted: 01/13/2016] [Indexed: 06/05/2023]
Abstract
In the current context of international conflicts and localized terrorist actions, there is unfortunately a permanent threat of attacks with unconventional warfare agents. Among these, biological agents such as toxins, microorganisms, and viruses deserve particular attention owing to their ease of production and dissemination. Mass spectrometry (MS)-based techniques for the detection and quantification of biological agents have a decisive role to play for countermeasures in a scenario of biological attacks. The application of MS to every field of both organic and macromolecular species has in recent years been revolutionized by the development of soft ionization techniques (MALDI and ESI), and by the continuous development of MS technologies (high resolution, accurate mass HR/AM instruments, novel analyzers, hybrid configurations). New possibilities have emerged for exquisite specific and sensitive detection of biological warfare agents. MS-based strategies for clinical application can now address a wide range of analytical questions mainly including issues related to the complexity of biological samples and their available volume. Multiplexed toxin detection, discovery of new markers through omics approaches, and identification of untargeted microbiological or of novel molecular targets are examples of applications. In this paper, we will present these technological advances along with the novel perspectives offered by omics approaches to clinical detection and follow-up.
Collapse
Affiliation(s)
| | - Jean Armengaud
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunologie, 30207, Bagnols sur-Cèze, France
| | - François Fenaille
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, MetaboHUB-Paris, CEA Saclay, Building 136, 91191, Gif-sur-Yvette cedex, France
| | - Eric Ezan
- CEA, Programme Transversal Technologies pour la Santé, 91191, Gif sur Yvette, France
| |
Collapse
|
13
|
Interleukin-33 as a Potential Therapeutic Target for Interstitial Cystitis: New Perspectives on Mast Cell Regulation. Int Neurourol J 2015; 19:132. [PMID: 26620893 PMCID: PMC4582083 DOI: 10.5213/inj.2015.19.3.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
|
14
|
Metabolomics goes to work for you. Int Neurourol J 2014; 18:104. [PMID: 25279235 PMCID: PMC4180158 DOI: 10.5213/inj.2014.18.3.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|