1
|
Zhao Z, Cao Z, Zhu Q, Xu H, Li S, Zhu L, Xu G, Zhu K, Zhang J, Wu D. Layer-Dependent Effect of Aβ-Pathology on Cortical Microstructure With Ex Vivo Human Brain Diffusion MRI at 7 Tesla. Hum Brain Mapp 2025; 46:e70222. [PMID: 40317841 PMCID: PMC12046383 DOI: 10.1002/hbm.70222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/07/2025] [Accepted: 04/21/2025] [Indexed: 05/07/2025] Open
Abstract
The laminar-specific distributions of Aβ and Tau deposition in the neocortex of Alzheimer's disease (AD) have been established. However, direct evidence about the effect of AD pathology on cortical microstructure is lacking in human studies. We performed high-resolution T2-weighted and diffusion-weighted MRI (dMRI) on 15 ex vivo whole-hemisphere specimens, including eight cases with low AD neuropathologic change, three cases with primary age-related tauopathy (PART), and four healthy controls (HCs). Using the diffusion tensor model, we evaluated microstructure patterns in six layers of gray matter cortex and performed MRI-histology correlation analysis across cortical layers. Aβ-positive cases exhibited higher diffusivity than Aβ-negative cases (PART and HC) in selected cortical regions, particularly in the inferior frontal cortex. Both Aβ/Tau depositions and dMRI-based microstructural markers demonstrated distinct cortical layer-dependent and region-specific patterns. A significant positive correlation was observed between increased diffusivity and Aβ burden across six cortical layers but not with Tau burden. Furthermore, the mean diffusivity in layer V of the inferior frontal cortex significantly increased with the Amyloid stage. Our findings demonstrate a layer-dependent effect of Aβ pathology on cortical microstructure of the human brain, which may be used to serve as a marker of low AD neuropathologic change.
Collapse
Affiliation(s)
- Zhiyong Zhao
- Children's HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | - Zuozhen Cao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical EngineeringCollege of Biomedical Engineering & Instrument Science, Zhejiang UniversityHangzhouChina
| | - Qinfeng Zhu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical EngineeringCollege of Biomedical Engineering & Instrument Science, Zhejiang UniversityHangzhouChina
| | - Haoan Xu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical EngineeringCollege of Biomedical Engineering & Instrument Science, Zhejiang UniversityHangzhouChina
| | - Sihui Li
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical EngineeringCollege of Biomedical Engineering & Instrument Science, Zhejiang UniversityHangzhouChina
| | - Liangying Zhu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical EngineeringCollege of Biomedical Engineering & Instrument Science, Zhejiang UniversityHangzhouChina
| | - Guojun Xu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical EngineeringCollege of Biomedical Engineering & Instrument Science, Zhejiang UniversityHangzhouChina
| | - Keqing Zhu
- National Human Brain Bank for Health and DiseaseZhejiang UniversityHangzhouChina
| | - Jing Zhang
- National Human Brain Bank for Health and DiseaseZhejiang UniversityHangzhouChina
- Department of PathologyThe First Affiliated Hospital and School of Medicine, Zhejiang UniversityHangzhouChina
| | - Dan Wu
- Children's HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical EngineeringCollege of Biomedical Engineering & Instrument Science, Zhejiang UniversityHangzhouChina
| |
Collapse
|
2
|
Castillo-Vazquez SK, Massieu L, Rincón-Heredia R, García-de la Torre P, Quiroz-Baez R, Gomez-Verjan JC, Rivero-Segura NA. Glutamatergic Neurotransmission in Aging and Neurodegenerative Diseases: A Potential Target to Improve Cognitive Impairment in Aging. Arch Med Res 2024; 55:103039. [PMID: 38981341 DOI: 10.1016/j.arcmed.2024.103039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Aging is characterized by the decline in many of the individual's capabilities. It has been recognized that the brain undergoes structural and functional changes during aging that are occasionally associated with the development of neurodegenerative diseases. In this sense, altered glutamatergic neurotransmission, which involves the release, binding, reuptake, and degradation of glutamate (Glu) in the brain, has been widely studied in physiological and pathophysiological aging. In particular, changes in glutamatergic neurotransmission are exacerbated during neurodegenerative diseases and are associated with cognitive impairment, characterized by difficulties in memory, learning, concentration, and decision-making. Thus, in the present manuscript, we aim to highlight the relevance of glutamatergic neurotransmission during cognitive impairment to develop novel strategies to prevent, ameliorate, or delay cognitive decline. To achieve this goal, we provide a comprehensive review of the changes reported in glutamatergic neurotransmission components, such as Glu transporters and receptors during physiological aging and in the most studied neurodegenerative diseases. Finally, we describe the current therapeutic strategies developed to target glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Selma Karime Castillo-Vazquez
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lourdes Massieu
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ruth Rincón-Heredia
- Unidad de Imagenología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Paola García-de la Torre
- 4 Unidad de Investigación Epidemiológica y en Servicios de Salud, Área de Envejecimiento, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City Mexico
| | - Ricardo Quiroz-Baez
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City, Mexico
| | | | | |
Collapse
|
3
|
Burmistrov DE, Gudkov SV, Franceschi C, Vedunova MV. Sex as a Determinant of Age-Related Changes in the Brain. Int J Mol Sci 2024; 25:7122. [PMID: 39000227 PMCID: PMC11241365 DOI: 10.3390/ijms25137122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
The notion of notable anatomical, biochemical, and behavioral distinctions within male and female brains has been a contentious topic of interest within the scientific community over several decades. Advancements in neuroimaging and molecular biological techniques have increasingly elucidated common mechanisms characterizing brain aging while also revealing disparities between sexes in these processes. Variations in cognitive functions; susceptibility to and progression of neurodegenerative conditions, notably Alzheimer's and Parkinson's diseases; and notable disparities in life expectancy between sexes, underscore the significance of evaluating aging within the framework of gender differences. This comprehensive review surveys contemporary literature on the restructuring of brain structures and fundamental processes unfolding in the aging brain at cellular and molecular levels, with a focus on gender distinctions. Additionally, the review delves into age-related cognitive alterations, exploring factors influencing the acceleration or deceleration of aging, with particular attention to estrogen's hormonal support of the central nervous system.
Collapse
Affiliation(s)
- Dmitriy E. Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia;
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia;
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Claudio Franceschi
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| |
Collapse
|
4
|
Tenchov R, Sasso JM, Wang X, Zhou QA. Aging Hallmarks and Progression and Age-Related Diseases: A Landscape View of Research Advancement. ACS Chem Neurosci 2024; 15:1-30. [PMID: 38095562 PMCID: PMC10767750 DOI: 10.1021/acschemneuro.3c00531] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 01/04/2024] Open
Abstract
Aging is a dynamic, time-dependent process that is characterized by a gradual accumulation of cell damage. Continual functional decline in the intrinsic ability of living organisms to accurately regulate homeostasis leads to increased susceptibility and vulnerability to diseases. Many efforts have been put forth to understand and prevent the effects of aging. Thus, the major cellular and molecular hallmarks of aging have been identified, and their relationships to age-related diseases and malfunctions have been explored. Here, we use data from the CAS Content Collection to analyze the publication landscape of recent aging-related research. We review the advances in knowledge and delineate trends in research advancements on aging factors and attributes across time and geography. We also review the current concepts related to the major aging hallmarks on the molecular, cellular, and organismic level, age-associated diseases, with attention to brain aging and brain health, as well as the major biochemical processes associated with aging. Major age-related diseases have been outlined, and their correlations with the major aging features and attributes are explored. We hope this review will be helpful for apprehending the current knowledge in the field of aging mechanisms and progression, in an effort to further solve the remaining challenges and fulfill its potential.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Janet M. Sasso
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Xinmei Wang
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Qiongqiong Angela Zhou
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| |
Collapse
|
5
|
Teissier T, Boulanger E, Deramecourt V. Normal ageing of the brain: Histological and biological aspects. Rev Neurol (Paris) 2020; 176:649-660. [PMID: 32418702 DOI: 10.1016/j.neurol.2020.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 02/02/2023]
Abstract
All the hallmarks of ageing are observed in the brain, and its cells, especially neurons, are characterized by their remarkably long lifetime. Like any organ or system, the brain is exposed to ageing processes which affect molecules, cells, blood vessels, gross morphology and, uniquely for this organ, cognition. The preponderant cerebral structures are characterized by the cellular processes of neurons and glial cells and while the quantity of cerebral interstitial fluid is limited, it is now recognized as playing a crucial role in maintaining cerebral homeostasis. Most of our current knowledge of the ageing brain derives from studies of neurodegenerative disorders. It is interesting to note that common features of these disorders, like Tau, phosphoTau and amyloid peptide accumulation, can begin relatively early in life as a result of physiological ageing and are present in subclinical cases while also being used as early-stage markers of neurodegenerative diseases in progression. In this article, we review tissue and cellular modifications in the ageing brain. Commonly described macroscopic, microscopic and vascular changes that in the ageing brain are contrasted with those seen in neurodegenerative contexts. We also review the molecular changes that occur with age in the brain, such as modifications in gene expression, insulin/insulin-like growth factor 1 signalling dysfunction, post-translational protein modifications, mitochondrial dysfunction, autophagy and calcium conductance changes.
Collapse
Affiliation(s)
- T Teissier
- Inserm, université de Lille, CHU de Lille, Institut Pasteur de Lille, U1167 - RID-AGE - facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, équipe « de l'inflammation au vieillissement, 59000 Lille, France.
| | - E Boulanger
- Inserm, université de Lille, CHU de Lille, Institut Pasteur de Lille, U1167 - RID-AGE - facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, équipe « de l'inflammation au vieillissement, 59000 Lille, France; Pôle de gérontologie, CHU de Lille, 59000 Lille, France
| | - V Deramecourt
- Inserm, UMR-S 1172 « Alzheimer et Tauopathies », centre mémoire de ressources et de recherche, Labex DISTALZ, université de Lille, CHU de Lille, 59000 Lille, France; Pôle de neurologie, CHU de Lille, 59000 Lille, France
| |
Collapse
|
6
|
Van Houcke J, Geeraerts E, Vanhunsel S, Beckers A, Noterdaeme L, Christiaens M, Bollaerts I, De Groef L, Moons L. Extensive growth is followed by neurodegenerative pathology in the continuously expanding adult zebrafish retina. Biogerontology 2019. [PMID: 30382466 DOI: 10.1007/s10522-018-9780-6/figures/10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The development of effective treatments for age-related neurodegenerative diseases remains one of the biggest medical challenges today, underscoring the high need for suitable animal model systems to improve our understanding of aging and age-associated neuropathology. Zebrafish have become an indispensable complementary model organism in gerontology research, yet their growth-control properties significantly differ from those in mammals. Here, we took advantage of the clearly defined and highly conserved structure of the fish retina to study the relationship between the processes of growth and aging in the adult zebrafish central nervous system (CNS). Detailed morphological measurements reveal an early phase of extensive retinal growth, where both the addition of new cells and stretching of existent tissue drive the increase in retinal surface. Thereafter, and coinciding with a significant decline in retinal growth rate, a neurodegenerative phenotype becomes apparent,-characterized by a loss of synaptic integrity, an age-related decrease in cell density and the onset of cellular senescence. Altogether, these findings support the adult zebrafish retina as a valuable model for gerontology research and CNS disease modeling and will hopefully stimulate further research into the mechanisms of aging and age-related pathology.
Collapse
Affiliation(s)
- Jessie Van Houcke
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
| | - Emiel Geeraerts
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
| | - Sophie Vanhunsel
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
| | - An Beckers
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
| | - Lut Noterdaeme
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
| | - Marijke Christiaens
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
| | - Ilse Bollaerts
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
| | - Lies De Groef
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, Box 2464, 3000, Leuven, Belgium.
| |
Collapse
|
7
|
Van Houcke J, Geeraerts E, Vanhunsel S, Beckers A, Noterdaeme L, Christiaens M, Bollaerts I, De Groef L, Moons L. Extensive growth is followed by neurodegenerative pathology in the continuously expanding adult zebrafish retina. Biogerontology 2018; 20:109-125. [PMID: 30382466 DOI: 10.1007/s10522-018-9780-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/26/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Jessie Van Houcke
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
| | - Emiel Geeraerts
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
| | - Sophie Vanhunsel
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
| | - An Beckers
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
| | - Lut Noterdaeme
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
| | - Marijke Christiaens
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
| | - Ilse Bollaerts
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
| | - Lies De Groef
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, Box 2464, 3000, Leuven, Belgium.
| |
Collapse
|
8
|
Starnawska A, Tan Q, McGue M, Mors O, Børglum AD, Christensen K, Nyegaard M, Christiansen L. Epigenome-Wide Association Study of Cognitive Functioning in Middle-Aged Monozygotic Twins. Front Aging Neurosci 2017; 9:413. [PMID: 29311901 PMCID: PMC5733014 DOI: 10.3389/fnagi.2017.00413] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/28/2017] [Indexed: 12/22/2022] Open
Abstract
As the world's population ages, the age-related cognitive decline presents a great challenge to world's healthcare systems. One of the molecular mechanisms implicated in cognitive ageing is DNA methylation, an epigenetic modification known to be a key player in memory formation, maintenance, and synaptic plasticity. Using the twin design we performed an epigenome-wide association study (EWAS) in a population of 486 middle-aged monozygotic twins (mean age at follow-up 65.9, SD = 6.1) and correlated their blood DNA methylation to their level (cross-sectional analysis) and change in cognitive abilities over 10 years (longitudinal analysis). We identified several CpG sites where cross-sectional cognitive functioning was associated with DNA methylation levels. The top identified loci were located in ZBTB46 (p = 5.84 × 10-7), and TAF12 (p = 4.91 × 10-7). KEGG's enrichment analyses of the most associated findings identified "Neuroactive ligand-receptor interaction" as the most enriched pathway (p = 0.0098). Change in cognitive functioning over 10 years was associated with DNA methylation levels in AGBL4 (p = 9.01 × 10-7) and SORBS1 (p = 5.28 × 10-6), with the first gene playing an important role in neuronal survival and the latter gene implicated before in Alzheimer's disease and ischemic stroke. Our findings point to an association between changes in DNA methylation of genes related to neuronal survival and change of cognitive functioning in aging individuals.
Collapse
Affiliation(s)
- Anna Starnawska
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
| | - Qihua Tan
- The Danish Twin Registry, Institute of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Matt McGue
- The Danish Twin Registry, Institute of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Psychology, University of Minnesota, Minneapolis, MN, United States
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - Anders D. Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
| | - Kaare Christensen
- The Danish Twin Registry, Institute of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- The Danish Aging Research Center, Institute of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Mette Nyegaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
| | - Lene Christiansen
- The Danish Twin Registry, Institute of Public Health, University of Southern Denmark, Odense, Denmark
- The Danish Aging Research Center, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
9
|
Lin SH, Hsu WC, Ng SH, Cheng JS, Khegai O, Huang CC, Chen YL, Chen YC, Wang JJ. Increased Water Diffusion in the Parcellated Cortical Regions from the Patients with Amnestic Mild Cognitive Impairment and Alzheimer's Disease. Front Aging Neurosci 2017; 8:325. [PMID: 28123367 PMCID: PMC5225103 DOI: 10.3389/fnagi.2016.00325] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/14/2016] [Indexed: 11/13/2022] Open
Abstract
Background: The loss of cortical neuron environment integrity is the hallmark of neurodegeneration diseases such as Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI). To reveal the microenvironment changes in cerebral cortex, the current study aimed to examine the changes of mean diffusivity (MD) in parcellated brain among AD, aMCI patients and normal controls (NC). Methods: Diffusion tensor imaging data with the whole brain coverage were acquired from 28 AD (aged 69.4 ± 8.2 year old), 41 aMCI patients (aged 68.2 ± 6.4 year old) and 40 NC subjects (aged 65.7 ± 6.4 year old). Subsequently, the MD values were parcellated according to the standard automatic anatomic labeling (AAL) template. Only the 90 regions located in the cerebral cortex were used in the final analysis. The mean values of MD from each brain region were extracted and compared among the participant groups. The integrity of the white matter tracts and gray matter atrophy was analyzed using the track-based spatial statistics and voxel-based morphometry approaches, respectively. Results: Significant differences of MD were noticed both in aMCI and AD patients, in terms of the affected regions and the amount of increase. The hippocampus, parahippocampal gyrus and cingulum were the most significantly affected regions in AD patients. From all the 90 cerebral cortex regions, significant increase of MD in the AD patients was found in 40 regions, compared to only one (fusiform gyrus on the right) in aMCI patients. In the disease affected regions, the MD from aMCI patients is in state between NC and AD patients. Conclusions: Increased MD in the specific regions of the brain shows the feasibility of MD as an indicator of the early stage cortical degeneration in aMCI and AD patients.
Collapse
Affiliation(s)
- Sung-Han Lin
- Department of Medical Imaging and Radiological Sciences, Chang Gung UniversityTaoyuan, Taiwan; Graduate Institute of Clinical Medical Sciences, Chang Gung UniversityTaoyuan, Taiwan
| | - Wen-Chuin Hsu
- Department of Neurology, Chang Gung Memorial HospitalTaoyuan, Taiwan; Dementia Center, Chang Gung Memorial HospitalTaoyuan, Taiwan
| | - Shu-Hang Ng
- Department of Medical Imaging and Radiological Sciences, Chang Gung UniversityTaoyuan, Taiwan; Department of Medical Imaging and Intervention, Chang Gung Memorial HospitalLinkou, Taiwan
| | - Jur-Shan Cheng
- Clinical Informatics and Medical Statistics Research Center, College of Medicine, Chang Gung University Taoyuan, Taiwan
| | - Oleksandr Khegai
- Department of Medical Imaging and Radiological Sciences, Chang Gung University Taoyuan, Taiwan
| | - Chin-Chang Huang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine Taoyuan, Taiwan
| | - Yao-Liang Chen
- Department of Medical Imaging and Intervention, Chang Gung Memorial HospitalLinkou, Taiwan; Department of Diagnostic Radiology, Chang Gung Memorial HospitalKeelung, Taiwan
| | - Yi-Chun Chen
- Department of Neurology, Chang Gung Memorial HospitalTaoyuan, Taiwan; Dementia Center, Chang Gung Memorial HospitalTaoyuan, Taiwan
| | - Jiun-Jie Wang
- Department of Medical Imaging and Radiological Sciences, Chang Gung UniversityTaoyuan, Taiwan; Department of Medical Imaging and Radiological Sciences, Healthy Aging Research Center, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial HospitalTaoyuan, Taiwan; Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial HospitalTaoyuan, Taiwan; Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial HospitalLinkou, Taiwan
| |
Collapse
|