1
|
Arjmand S, Sadrabad EK, Ramroudi F, Mollakhalili‐meybodi N. Cold Plasma Treatment of Quinoa Grains: Changes in Phytic Acid, Saponin, Content, and Antioxidant Capacity. Food Sci Nutr 2025; 13:e4691. [PMID: 39803298 PMCID: PMC11716995 DOI: 10.1002/fsn3.4691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/30/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025] Open
Abstract
The impact of atmospheric cold plasma (ACP) treatment (at 50 and 60 kV for 5 and 10 min) on nutritional (total phenolic and flavonoids contents, antioxidant capacity, and TBARs) and antinutritional (saponin and phytic acid) characteristics of quinoa grains has been investigated at this study. Results indicated that ACP treatment is significantly effective to reduce the antinutritional compounds compared with the control sample (p ≤ 0.05), among which S4 (i.e., treated at 60 kV for 10 min) and S2 (i.e., treated at 50 kV for 10 min) samples showed the highest decrease in saponin and phytic acid content, respectively. Also, total phenolic content and antioxidant capacity (DPPH and FRAP) of ACP-treated samples have decreased compared with the control sample. The flavonoid content of ACP-treated samples has been increased compared with the control sample (p ≤ 0.05). In general, the S4 (at 60 kV for 10 min) samples had the highest amount of flavonoid and phenolic content compared with the other samples. A significant reduction in TBAR values has been observed by ACP treatment with the maximum reduction at S4 (i.e., treated at 60 kV for 10 min) samples. Results indicated that ACP treatment at 60 KV for 10 min is effective to reduce the antinutritional compounds and maintain the antioxidant compounds of quinoa grains as well. Considering the necessity of keeping the nutritional characteristics of grains through processing, it needs to be monitored and optimized the condition in a way that nutritional characteristics are preserved.
Collapse
Affiliation(s)
- Sanaz Arjmand
- Research Center for Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
- Department of Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Elham Khalili Sadrabad
- Research Center for Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
- Department of Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Fereshteh Ramroudi
- Research Center for Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
- Department of Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Neda Mollakhalili‐meybodi
- Research Center for Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
- Department of Food Science and Technology, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| |
Collapse
|
2
|
Li H, Zhu F, Li G. Beverages developed from pseudocereals (quinoa, buckwheat, and amaranth): Nutritional and functional properties. Compr Rev Food Sci Food Saf 2025; 24:e70081. [PMID: 39731715 DOI: 10.1111/1541-4337.70081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/30/2024] [Accepted: 11/20/2024] [Indexed: 12/30/2024]
Abstract
The rising global demand for nutritious, sustainable, and plant-based beverages has catalyzed interest in pseudocereal-based products, offering an innovative alternative to traditional cereals. Pseudocereals such as quinoa, buckwheat, and amaranth are valued for their exceptional nutritional profiles, including high-quality proteins, dietary fibers, and bioactive compounds. This review explores the development of pseudocereal-based beverages, emphasizing their potential as milk alternatives, fermented drinks, and beer products. The fermentation process enhances their nutritional value, bioavailability, and sensory attributes, while also reducing antinutritional factors like phytates and saponins. Moreover, these beverages exhibit promising health benefits, including antioxidant, hypoglycemic, antidiabetic, and antihypertensive effects. This review provides a comprehensive evaluation of pseudocereal-based beverages from regulatory considerations to production processes, highlighting the potential of these ancient grains in reshaping the beverage industry while addressing modern nutritional needs. Future research directions on pseudocereal-based beverages are also suggested.
Collapse
Affiliation(s)
- Hang Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Fan Zhu
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Guantian Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
3
|
Martín-Miguélez JM, Martín I, González-Mohíno A, Souza Olegario L, Peromingo B, Delgado J. Ultra-processed plant-based analogs: Addressing the challenging journey toward health and safety. J Food Sci 2024; 89:10344-10362. [PMID: 39656797 DOI: 10.1111/1750-3841.17588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/23/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
Currently, plant-based analogs are presented as healthier alternatives to the products they are intended to replace. However, the processing to which ultra-processed plant-based analogs are subjected to acquire the characteristics of animal-derived products might result in the opposite effect, producing unhealthy ultra-processed foods. In the present review, a list of strategies widely known and already employed in animal-derived products is suggested to achieve healthier, safer, and tastier ultra-processed plant-based analogs: fermentation, employment of probiotics and postbiotics, NaCl replacement or substitution, addition of antioxidants, and fatty profile enhancement. In general, these strategies are not yet applied to the plant-based products available on the market; thus, this research paper might induce new investigation pathways for researchers and producers to develop actually healthier alternatives.
Collapse
Affiliation(s)
- Jose M Martín-Miguélez
- Higiene y Seguridad Alimentaria, Instituto de Investigación de Carne y Productos Cárnicos (IProCar), Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
- Tecnología de los Alimentos, Instituto de Investigación de Carne y Productos Cárnicos (IProCar), Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Irene Martín
- Higiene y Seguridad Alimentaria, Instituto de Investigación de Carne y Productos Cárnicos (IProCar), Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Alberto González-Mohíno
- Tecnología de los Alimentos, Instituto de Investigación de Carne y Productos Cárnicos (IProCar), Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Lary Souza Olegario
- Tecnología de los Alimentos, Instituto de Investigación de Carne y Productos Cárnicos (IProCar), Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Belén Peromingo
- Higiene y Seguridad Alimentaria, Instituto de Investigación de Carne y Productos Cárnicos (IProCar), Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Josué Delgado
- Higiene y Seguridad Alimentaria, Instituto de Investigación de Carne y Productos Cárnicos (IProCar), Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| |
Collapse
|
4
|
Hidalgo-Fuentes B, de Jesús-José E, Cabrera-Hidalgo ADJ, Sandoval-Castilla O, Espinosa-Solares T, González-Reza RM, Zambrano-Zaragoza ML, Liceaga AM, Aguilar-Toalá JE. Plant-Based Fermented Beverages: Nutritional Composition, Sensory Properties, and Health Benefits. Foods 2024; 13:844. [PMID: 38540834 PMCID: PMC10969568 DOI: 10.3390/foods13060844] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 11/11/2024] Open
Abstract
Plant-based beverages have gained consumers' attention for being the main substitutes for dairy milk, especially for people with lactose intolerance, milk allergies, and a prevalence of hypercholesterolemia. Moreover, there is a growing demand for a more sustainable diet and plant-based lifestyle due to concerns related to animal wellbeing, environmental impacts linked to dairy production, and the rising cost of animal-derived foods. However, there are some factors that restrict plant-based beverage consumption, including their nutritional quality and poor sensory profile. In this context, fermentation processes can contribute to the improvement of their sensory properties, nutritional composition, and functional/bioactive profile. In particular, the fermentation process can enhance flavor compounds (e.g., acetoin and acetic acid) while decreasing off-flavor components (e.g., hexanal and hexanol) in the substrate. Furthermore, it enhances the digestibility and bioavailability of nutrients, leading to increased levels of vitamins (e.g., ascorbic acid and B complex), amino acids (e.g., methionine and tryptophan), and proteins, while simultaneously decreasing the presence of anti-nutritional factors (e.g., phytic acid and saponins). In contrast, plant-based fermented beverages have been demonstrated to possess diverse bioactive compounds (e.g., polyphenols and peptides) with different biological properties (e.g., antioxidant, anti-inflammatory, and antihypertensive). Therefore, this article provides an overview of plant-based fermented beverages including their production, technological aspects, and health benefits.
Collapse
Affiliation(s)
- Belén Hidalgo-Fuentes
- Licenciatura en Ciencia y Tecnología de Alimentos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Av. de las Garzas 10. Col. El Panteón, Lerma de Villada 52005, Estado de Mexico, Mexico (E.d.J.-J.)
| | - Edgar de Jesús-José
- Licenciatura en Ciencia y Tecnología de Alimentos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Av. de las Garzas 10. Col. El Panteón, Lerma de Villada 52005, Estado de Mexico, Mexico (E.d.J.-J.)
| | - Anselmo de J. Cabrera-Hidalgo
- TecNM-Instituto Tecnológico Superior de Tlatlauquitepec (ITSTL), Carretera Federal Amozoc-Nautla km 122+600 Almoloni, Tlatlauquitepec 73907, Puebla, Mexico;
| | - Ofelia Sandoval-Castilla
- Departamento de Ingeniería Agroindustrial, Universidad Autónoma Chapingo, Texcoco 56230, Estado de Mexico, Mexico
| | - Teodoro Espinosa-Solares
- Departamento de Ingeniería Agroindustrial, Universidad Autónoma Chapingo, Texcoco 56230, Estado de Mexico, Mexico
- Agricultural Research and Extension Center, Southern University, Baton Rouge, LA 70813, USA
| | - Ricardo. M. González-Reza
- Laboratorio de Procesos de Transformación y Tecnologías Emergentes de Alimentos-UIM, FES-Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54714, Estado de Mexico, Mexico (M.L.Z.-Z.)
| | - María L. Zambrano-Zaragoza
- Laboratorio de Procesos de Transformación y Tecnologías Emergentes de Alimentos-UIM, FES-Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54714, Estado de Mexico, Mexico (M.L.Z.-Z.)
| | - Andrea M. Liceaga
- Protein Chemistry and Bioactive Peptides Laboratory, Department of Food Science, Purdue University, 745 Agriculture Mall, West Lafayette, IN 47907, USA
| | - José E. Aguilar-Toalá
- Departamento de Ciencias de la Alimentación, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Av. de las Garzas 10. Col. El Panteón, Lerma de Villada 52005, Estado de Mexico, Mexico
| |
Collapse
|
5
|
El-Menawy RK, Mohamed DM, Ismail MM, Hassan AM. Optimal combination of cow and quinoa milk for manufacturing of functional fermented milk with high levels of antioxidant, essential amino acids and probiotics. Sci Rep 2023; 13:20638. [PMID: 38001129 PMCID: PMC10673919 DOI: 10.1038/s41598-023-47839-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023] Open
Abstract
The aim of this research was to produce Rayeb milk, a bio-fermented milk product that has important benefits for health and nutrition. The Rayeb milk was divided into five different treatments: T1 from cow milk, T2 from quinoa milk, T3 from a mixture of cow and quinoa milk (50%:50%), T4 from a mixture of cow and quinoa milk (75%:25%), and T5 from a mixture of cow and quinoa milk (25%:75%). As a starting culture, ABT-5 culture was used. The results demonstrated that blending quinoa milk with cow milk increased the total solids, fat, total protein, pH, acetaldehyde, and diacetyl values of the resulting Rayeb milk. Additionally, the total phenolic content, antioxidant activity, minerals, and amino acids-particularly important amino acids-in Rayeb milk with quinoa milk were higher. In Rayeb milk prepared from a cow and quinoa milk mixture, Lactobacillus acidophilus and Bifidobacterium bifidum were highly stimulated. All Rayeb milk samples, particularly those that contained quinoa milk, possessed more bifidobacteria than the recommended count of 106 cfu g-1 for use as a probiotic. Based on the sensory evaluation results, it is possible to manufacture a bio-Rayeb milk acceptable to the consumer and has a high nutritional and health values using a mixture of cow milk and quinoa milk (75%:25% or 50%:50%) and ABT-5 culture.
Collapse
Affiliation(s)
- Reham Kamal El-Menawy
- Dairy Technology Research Department, Animal Production Research Institute, Agricultural Research Center, Dokki, Giza, Egypt
| | - Doaa Mamdoh Mohamed
- Dairy Microbiology Research Department, Animal Production Research Institute, Agricultural Research Center, Dokki, Giza, Egypt
| | - Magdy Mohamed Ismail
- Dairy Technology Research Department, Animal Production Research Institute, Agricultural Research Center, Dokki, Giza, Egypt.
| | - Amina Mahmoud Hassan
- Dairy Technology Research Department, Animal Production Research Institute, Agricultural Research Center, Dokki, Giza, Egypt
| |
Collapse
|
6
|
Jan N, Hussain SZ, Naseer B, Bhat TA. Amaranth and quinoa as potential nutraceuticals: A review of anti-nutritional factors, health benefits and their applications in food, medicinal and cosmetic sectors. Food Chem X 2023; 18:100687. [PMID: 37397203 PMCID: PMC10314148 DOI: 10.1016/j.fochx.2023.100687] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 07/04/2023] Open
Abstract
Amaranth and quinoa are small-seeded grains with high nutritional and phytochemical profiles that promote numerous health benefits and offer protection against various chronic ailments including hypertension, diabetes, cancer, and cardiovascular disorders. They are classified as pseudocereals and possess significant nutritional benefits due to their abundance of proteins, lipids, fiber, vitamins, and minerals. Moreover, they exhibit an exceptional balance of essential amino acids. Despite having several health benefits, these grains have lost their popularity due to their coarse nature and are neglected in developed countries. Research and development activities are growing to explore these underutilized crops, characterizing and valorizing them for food applications. In this context, this review highlights the latest advancements in use of amaranth and quinoa as nutraceutical and functional foods, covering their bioactive substances, anti-nutritional factors, processing techniques, health benefits, and applications. This information will be valuable for planning novel research for efficient use of these neglected grains.
Collapse
|
7
|
Sandez Penidez SH, Velasco Manini MA, Gerez CL, Rollan GC. Consortia of lactic acid bacteria strains increase the antioxidant activity and bioactive compounds of quinoa sourdough - based biscuits. World J Microbiol Biotechnol 2023; 39:95. [PMID: 36759385 DOI: 10.1007/s11274-023-03538-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
The aim of this work was to use consortia (two or three strains) of lactic acid bacteria (LAB) [Lactiplantibacillus plantarum CRL 1964 and CRL 1973, and Leuconostoc mesenteroides subsp. mesenteroides CRL 2131] to obtain quinoa sourdoughs (QS) for further manufacturing of quinoa sourdough-based biscuits (QB). Microbial grow and acidification were evaluated in QS while antioxidant activity (AOA), total phenolic compounds (TPC) and total flavonoid compounds (TFC) were determined in QS and QB. QS inoculated with LAB consortia respect to monocultures showed higher growth and acidification, AOA (7.9?42.6%), TPC (19.9?35.0%) and TFC (6.1?31.6%). QB prepared with QS inoculated by LAB consortia showed higher AOA (5.0-81.1%), TPC (22.5?57.5%) and TFC (14.0-79.9%) than biscuits inoculated by monocultures sourdoughs. These results were attributed to a synergic effect from LAB consortia. Principal component analysis showed the highest scores of the evaluated characteristics for biscuits made with consortia sourdough of two (CRL1964?+?CRL2131) and three (CRL1964?+?CRL1973?+?CRL2131) strains.
Collapse
Affiliation(s)
- S H Sandez Penidez
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, Chacabuco 145 (4000) - San Miguel de Tucumán, San Miguel de Tucumán, Argentina
| | - M A Velasco Manini
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, Chacabuco 145 (4000) - San Miguel de Tucumán, San Miguel de Tucumán, Argentina
| | - C L Gerez
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, Chacabuco 145 (4000) - San Miguel de Tucumán, San Miguel de Tucumán, Argentina
| | - G C Rollan
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, Chacabuco 145 (4000) - San Miguel de Tucumán, San Miguel de Tucumán, Argentina.
| |
Collapse
|
8
|
Sridhar K, Bouhallab S, Croguennec T, Renard D, Lechevalier V. Recent trends in design of healthier plant-based alternatives: nutritional profile, gastrointestinal digestion, and consumer perception. Crit Rev Food Sci Nutr 2022; 63:10483-10498. [PMID: 35647889 DOI: 10.1080/10408398.2022.2081666] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In recent years, various types of plant-based meat, dairy, and seafood alternatives merged in the health-conscious consumer market. However, plant-based alternatives present complexity in terms of nutritional profile and absorption of nutrients after food ingestion. Thus, this review summarizes current strategies of plant-based alternatives and their nutritional analysis along with gastrointestinal digestion and bioavailability. Additionally, regulatory frameworks, labeling claims, and consumer perception of plant-based alternatives are discussed thoroughly with a focus on status and future prospects. Plant-based alternatives become a mainstream of many food-processing industries with increasing alternative plant-based food manufacturing industries around the world. Novel food processing technologies could enable the improving of the taste of plant-based foods. However, it is still a technical challenge in production of plant-based alternatives with authentic meaty flavor. In vitro gastrointestinal digestion studies revealed differences in the digestion and absorption of plant-based alternatives and animal-based foods due to their protein type, structure, composition, anti-nutritional factors, fibers, and polysaccharides. Overall, plant-based alternatives may facilitate the replacement of animal-based foods; however, improvements in nutritional profile and in vitro digestion should be addressed by application of novel processing technologies and food fortification. The specific legislation standards should be necessary to avoid consumer misleading of plant-based alternatives.
Collapse
Affiliation(s)
- Kandi Sridhar
- INRAE, Institut Agro Rennes-Angers, STLO, Rennes, France
| | - Saïd Bouhallab
- INRAE, Institut Agro Rennes-Angers, STLO, Rennes, France
| | | | - Denis Renard
- INRAE UR 1268 Biopolymères Interactions Assemblages, Nantes, France
| | | |
Collapse
|
9
|
Ziarno M, Cichońska P. Lactic Acid Bacteria-Fermentable Cereal- and Pseudocereal-Based Beverages. Microorganisms 2021; 9:2532. [PMID: 34946135 PMCID: PMC8706850 DOI: 10.3390/microorganisms9122532] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 11/26/2022] Open
Abstract
Plant beverages are becoming more popular, and fermented cereal- or pseudocereal-based beverages are increasingly used as alternatives for fermented products made from cow milk. This review aimed to describe the basic components of cereal- or pseudocereal-based beverages and determine the feasibility of fermenting them with lactic acid bacteria (LAB) to obtain products with live and active LAB cells and increased dietary value. The technology used for obtaining cereal- or pseudocereal-based milk substitutes primarily involves the extraction of selected plant material, and the obtained beverages differ in their chemical composition and nutritional value (content of proteins, lipids, and carbohydrates, glycemic index, etc.) due to the chemical diversity of the cereal and pseudocereal raw materials and the operations used for their production. Beverages made from cereals or pseudocereals are an excellent matrix for the growth of LAB, and the lactic acid fermentation not only produces desirable changes in the flavor of fermented beverages and the biological availability of nutrients but also contributes to the formation of functional compounds (e.g., B vitamins).
Collapse
Affiliation(s)
- Małgorzata Ziarno
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences-SGGW (WULS-SGGW), 02-787 Warsaw, Poland;
| | | |
Collapse
|
10
|
Rasika DMD, Vidanarachchi JK, Rocha RS, Balthazar CF, Cruz AG, Sant’Ana AS, Ranadheera CS. Plant-based milk substitutes as emerging probiotic carriers. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.10.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Abstract
Quinoa (Chenopodium quinoa Willd.) is increasingly singled out as a healthy food with an excellent nutritional profile. Besides being suitable for gluten-free diets, it is rich in proteins of excellent quality and is a good source of minerals and vitamins, as well as of natural antioxidants, such as phenolic compounds. The aim of this work is to present how fermentation can affect phenolic compound content and antioxidant capacity of quinoa. It emerged that fermentation can be used to increase phenolic compound content and antioxidant capacity in both quinoa seeds and flours. The use of fermented quinoa flours allowed obtaining bread and pasta richer in phenolic compounds and with a greater antioxidant capacity. Fungi are the main starters used in quinoa seed fermentation, while Lactobacillus strains have been applied to produce sourdoughs. Quinoa has been also fermented to obtain yogurt-like beverages with a higher content in phenolic compounds and a greater antioxidant activity. Strains of Lactobacillus sp. and Bifidobacterium sp. have been used as starters.
Collapse
|