1
|
Aptullahoglu E, Howladar M, Wallis JP, Marr H, Marshall S, Irving J, Willmore E, Lunec J. Targeting the MDM2-p53 Interaction with Siremadlin: A Promising Therapeutic Strategy for Treating TP53 Wild-Type Chronic Lymphocytic Leukemia. Cancers (Basel) 2025; 17:274. [PMID: 39858058 PMCID: PMC11763703 DOI: 10.3390/cancers17020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Chronic lymphocytic leukemia (CLL) treatment has transitioned from traditional chemotherapy to more targeted therapies, but challenges such as resistance and suboptimal responses persist. This study aimed to evaluate HDM201, a second-generation MDM2-p53 binding antagonist, as a novel therapeutic strategy for CLL, with a focus on its effectiveness across different TP53 genetic contexts. Methods: We utilized a panel of B cell leukemia-derived cell lines with varying TP53 statuses, including TP53-knockout (KO) derivatives of the human B cell line Nalm-6, and assessed the impact of HDM201 on primary CLL samples with both TP53 wild-type and mutant backgrounds. Results: Our results revealed that TP53 wild-type and heterozygous TP53-KO Nalm-6 cells were sensitive to HDM201, whereas homozygous TP53-KO cells and B cells with TP53 mutations exhibited significant resistance. Resistance was also noted in primary CLL samples with TP53 mutations. HDM201 effectively stabilized p53 and induced apoptosis in TP53 wild-type cells but had limited efficacy in TP53 mutant cells. Conclusions: These findings indicate that HDM201 holds promise as an additional targeted therapy option for wild-type TP53 CLL. The results underline the importance of TP53 status in predicting treatment efficacy and highlight the potential of HDM201 as a valuable addition to explore in CLL therapy. Future research should focus on identifying additional biomarkers of response and exploring the optimal way to include HDM201 in combination therapies to improve treatment outcomes in CLL.
Collapse
Affiliation(s)
- Erhan Aptullahoglu
- Biosciences Institute & Newcastle University Cancer Centre, Medical Faculty, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (E.A.); (M.H.); (J.I.); (E.W.)
- Department of Molecular Biology and Genetics, Faculty of Science, Bilecik Şeyh Edebali University, 11100 Bilecik, Türkiye
| | - Mohammed Howladar
- Biosciences Institute & Newcastle University Cancer Centre, Medical Faculty, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (E.A.); (M.H.); (J.I.); (E.W.)
| | - Jonathan P. Wallis
- Department of Haematology, Freeman Hospital, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| | - Helen Marr
- Department of Haematology, Freeman Hospital, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| | - Scott Marshall
- Department of Haematology, City Hospitals Sunderland NHS Trust, Sunderland SR4 7TP, UK
| | - Julie Irving
- Biosciences Institute & Newcastle University Cancer Centre, Medical Faculty, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (E.A.); (M.H.); (J.I.); (E.W.)
| | - Elaine Willmore
- Biosciences Institute & Newcastle University Cancer Centre, Medical Faculty, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (E.A.); (M.H.); (J.I.); (E.W.)
| | - John Lunec
- Biosciences Institute & Newcastle University Cancer Centre, Medical Faculty, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (E.A.); (M.H.); (J.I.); (E.W.)
| |
Collapse
|
2
|
Motamedi R, Aminzadeh S, Khodayar MJ, Khorsandi L, Salehcheh M. Protective Effects of Zingerone on Oxidative Stress in Doxorubicin-Induced Rat Hepatotoxicity. Rep Biochem Mol Biol 2024; 12:575-585. [PMID: 39086586 PMCID: PMC11288236 DOI: 10.61186/rbmb.12.4.575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/17/2024] [Indexed: 08/02/2024]
Abstract
Background Doxorubicin, a commonly utilized anthracycline antibiotic and chemotherapeutic agent, has been associated with hepatotoxicity as an adverse effect. This study aimed to evaluate protective effects of zingerone, a bioactive compound derived from ginger renowned for its antioxidative attributes, on oxidative stress in doxorubicin-induced rat hepatotoxicity. Methods In this experimental study, a total of 48 male Wistar rats were allocated into six distinct groups. The first group received a control treatment of normal saline. The second group was administered an intraperitoneal dose of 20 mg/kg of doxorubicin on day 5. The third group received an oral dose of 40 mg/kg of zingerone for 8 days. The fourth, fifth, and sixth groups were administered zingerone at doses of 10, 20, and 40 mg/kg, respectively, for the same 8-day period. On day 5, all groups, except the control group, received an intraperitoneal injection of doxorubicin. Following a 72-hour interval, the animals were anesthetized, and blood samples were collected to assess serum factors. Moreover, portions of the liver tissue were subjected to histopathological analysis and assessment of oxidative stress parameters. Results The activity levels of serum enzymes, including aspartate transaminase (AST), alanine transaminase (ALT), and liver malondialdehyde (MDA), increased in the doxorubicin group. Conversely, the levels of other parameters such as glutathione peroxidase (GPX), superoxide dismutase (SOD), and glutathione (GSH) decreased. However, the co-administration of zingerone effectively reversed these levels, restoring them back to normal. Conclusions These findings suggest that zingerone, particularly at a high dose, exhibit a hepatoprotective effect in the doxorubicin-induced hepatotoxicity model.
Collapse
Affiliation(s)
- Rezvan Motamedi
- Toxicol Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Soheila Aminzadeh
- Toxicol Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Toxicol, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mohammad Javad Khodayar
- Toxicol Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Toxicol, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Maryam Salehcheh
- Toxicol Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Toxicol, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
3
|
Elmorshdy Elsaeed Mohammed Elmorshdy S, Ahmed Shaker G, Helmy Eldken Z, Abdelbadie Salem M, Awadalla A, Mahmoud Abdel Shakour H, Elmahdy El Hosiny Sarhan1 M, Mohamed Hussein A. Impact of Cerium Oxide Nanoparticles on Metabolic, Apoptotic, Autophagic and Antioxidant Changes in Doxorubicin-Induced Cardiomyopathy: Possible Underlying Mechanisms. Rep Biochem Mol Biol 2023; 12:495-511. [PMID: 38618259 PMCID: PMC11015933 DOI: 10.61186/rbmb.12.3.495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/07/2023] [Indexed: 04/16/2024]
Abstract
Background In the current study, the effects of cerium oxide nanoparticles (nanocerium; NC) on doxorubicin (DOX)-induced cardiomyopathy and its possible underlying mechanisms were addressed. Methods 32 adult male rats were allocated into 4 groups; i) control group, ii) NC group; rats received NC (0.2 mg/kg, i.p., daily), iii) DOX group; rats received DOX 4 mg/kg (2 injections with a 14-day interval), and iv) DOX+NC group as DOX but rats received NC. At the end of the experiment, ECG and ECHO recordings and assessments of the levels of cardiac enzymes (CK-MB, LDH), and myocardial oxidative stress (MDA, catalase, and GSH), the expression of LC3 and beclin1 (markers of autophagy), caspase3 (marker of apoptosis) by immunohistochemistry, the expression of acetyl-CoA carboxylase alpha (ACCA) by PCR, and 5'adenosine monophosphate-activated protein kinase (AMPK) levels in the heart tissues were performed. Results The DOX group displayed a prolonged corrected QT interval, an increase in cardiac enzymes (CK-MB and LDH), myocardial oxidative stress (high MDA with low catalase and GSH), expression of ACCA, caspase-3, beclin1, and LC3 in myocardial tissues, with reduction in myocardial AMPK levels, and myocardial contractility (low ejection fraction, and fractional shortening). On the other hand, administration of NC with DOX resulted in significant improvement of all studied parameters. Conclusion NC offers a cardioprotective effect against DOX-induced cardiomyopathy. This effect might be due to its antioxidant and antiapoptotic effects as well as to the modulation of autophagy and metabolic dysfunctions induced by DOX in the heart tissues.
Collapse
Affiliation(s)
| | - Gehan Ahmed Shaker
- Medical physiology department, Faculty of Medicine, Mansoura University, Egypt.
| | - Zienab Helmy Eldken
- Medical physiology department, Faculty of Medicine, Mansoura University, Egypt.
- Department of Basic Medical Sciences, Ibn Sina University for Medical Sciences, Amman11104, Jordan.
| | | | - Amira Awadalla
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt.
| | | | | | | |
Collapse
|
4
|
Mohieldeen WA, Ahmed A, Elmosaad YM, Suliman RS, Alfahed A, Hjazi A, Al Shmrany H, Hakami N, Hakami MA, Almotiri A, Waggiallah HA. Detection of Methylene Tetrahydrofolate Reductase (MTHFR C677T) Mutation among Acute Lymphoblastic Leukemia in Sudanese Patients. Rep Biochem Mol Biol 2023; 12:458-464. [PMID: 38618256 PMCID: PMC11015921 DOI: 10.61186/rbmb.12.3.458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/02/2023] [Indexed: 04/16/2024]
Abstract
Background A genetic polymorphism that causes abnormal folate metabolism may lead to genomic instability and increase susceptibility to malignancies such as Acute Lymphoblastic leukemia (ALL). The purpose of this research is to identify methylene tetrahydrofolate reductase (MTHFR C677T) (NCBI ID: 4524) mutation in ALL patients. Methods The study was a descriptive case-control hospital-based study with one hundred Sudanese participants divided equally into fifty (50) Sudanese ALL diagnosed patients as cases and fifty (50) Sudanese individuals as controls. The MTHFR C677T mutant allele was detected using conventional PCR, with the primer sequence of MTHFR C677T F-TGAAGGAAGGTGTCTGCGGGA R-AGGACGGTGCGGTGAGAGTG. The study was conducted from January to March 2023, and samples were collected from the Radiation and Isotops Center at Khartoum Hospital. Results The investigation revealed that 12 of the 50 patients in the case group (24%) had the MTHFR C677T mutant allele, and the study also revealed that there is significant correlation with the control group. There is no significant relationship between socio-demographic variables and MTHFR mutation detection in ALL patients. Also, the sociodemographic variables predictors of MTHFR mutation among ALL patients adjusted for smoking habit revealed no significant relationship. Conclusion According to the findings of this study, the mutant allele of the Methylene Tetra Hydro Folate Reductase C677T was detected and demonstrated varying degrees of significance. It was concluded that the MTHFR C677T gene mutation was associated with acute lymphoblastic leukemia in Sudanese patients.
Collapse
Affiliation(s)
- Waad Almuatasem Mohieldeen
- Department of Hematology and Immunohematology, Faculty of Medical Laboratory, National University, Sudan.
| | - Albara Ahmed
- Department of Hematology, Medical Laboratory Program, Alfajr College for Sciences and Technology, Sudan.
| | - Yousif Mohammed Elmosaad
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Saudi Arabia.
| | - Rania Saad Suliman
- Department of Clinical Laboratory Sciences, Prince Sultan Military College for Health Sciences, Dhahran, Saudi Arabia.
| | - Abdulaziz Alfahed
- Department of Medical Laboratory, College of Applied Medical Science, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Science, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| | - Humood Al Shmrany
- Department of Medical Laboratory, College of Applied Medical Science, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| | - Nora Hakami
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia.
| | - Alhomidi Almotiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Dawadmi, Shaqra University, Riyadh, Saudi Arabia.
| | - Hisham Ali Waggiallah
- Department of Medical Laboratory, College of Applied Medical Science, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| |
Collapse
|
5
|
Kiani Ghalesardi O, Zaker F, Ghotaslou A, Boustani H, Rezvani MR, Kiani J, Shahidi M. Effect of siRNA-mediated silencing of p53R2 gene on sensitivity of T-ALL cellsto Daunorubicin. Gene 2023; 880:147622. [PMID: 37419428 DOI: 10.1016/j.gene.2023.147622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/17/2023] [Accepted: 07/05/2023] [Indexed: 07/09/2023]
Abstract
INTRODUCTION p53R2 is a p53-inducible protein that, as one of the subunits of ribonucleotide reductase, plays an important role in providing dNTPs for DNA repair. Although p53R2 is associated with cancer progression, its role in T-cell acute lymphoblastic leukemia (T-ALL) cells is unknown. Therefore, in this study, we evaluated the effect of p53R2 silencing on double-stranded DNA breaks, apoptosis and cell cycle of T-ALL cells treated with Daunorubicin. METHODS Transfection was performed using Polyethyleneimine (PEI). Gene expression was measured using real-time PCR and protein expression was evaluated using Western blotting. Cell metabolic activity and IC50 were calculated using MTT assay, formation of double-stranded DNA breaks was checked using immunohistochemistry for γH2AX, and cell cycle and apoptosis were evaluated using flow cytometry. RESULTS We found that p53 silencing synergistically inhibited the growth of T-ALL cells by Daunorubicin. p53R2 siRNA in combination with Daunorubicin but not alone increases the rate of DNA double-strand breaks in T-ALL cells. In addition, p53R2 siRNA significantly increased Daunorubicin-induced apoptosis. p53R2 siRNA also caused a non-significant increase in cells in G2 phase. CONCLUSION The results of the present study showed that silencing of p53R2 using siRNA can significantly increase the antitumor effects of Daunorubicin on T-ALL cells. Therefore, p53R2 siRNA has the potential to be used as an adjuvant therapy in combination with Daunorubicin in T-ALL.
Collapse
Affiliation(s)
- Omid Kiani Ghalesardi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Farhad Zaker
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Ghotaslou
- Department of Clinical laboratory sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hassan Boustani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohammad Reza Rezvani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Minoo Shahidi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center (CMRC), Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Hashemi SMA, Moradi A, Hosseini SY, Razavi Nikoo H, Bamdad T, Razmkhah M, Sarvari J, Tabarraei A. EBNA1 Upregulates P53-Inhibiting Genes in Burkitt's Lymphoma Cell Line. Rep Biochem Mol Biol 2023; 11:672-683. [PMID: 37131894 PMCID: PMC10149133 DOI: 10.52547/rbmb.11.4.672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/14/2022] [Indexed: 05/04/2023]
Abstract
Background Suppression of p53 is an important mechanism in Epstein-Barr virus associate-tumors and described as EBNA1-USP7 which is a key axis in p53 suppression. Thus, in this study, we aimed to evaluate the function of EBNA1 on the expression of p53-inhibiting genes including HDAC-1, MDM2, MDM4, Sirt-3, and PSMD10 and the influence of USP7 inhibition using GNE-6776 on p53 at protein/mRNA level. Methods The electroporation method was used to transfect the BL28 cell line with EBNA1. Cells with stable EBNA1 expression were selected by Hygromycin B treatment. The expression of seven genes, including PSMD10, HDAC-1, USP7, MDM2, P53, Sirt-3, and MDM4, was evaluated using a real-time PCR assay. For evaluating the effects of USP7 inhibition, the cells were treated with GNE-6776; after 24 hours and 4 days, the cells were collected and again expression of interest genes was evaluated. Results MDM2 (P=0.028), MDM4 (P=0.028), USP7 (P=0.028), and HDAC1 (P=0.015) all showed significantly higher expression in EBNA1-harboring cells compared to control plasmid transfected cells, while p53 mRNA expression was only marginally downregulated in EBNA1 harboring cells (P=0.685). Four-day after treatment, none of the studied genes was significantly changed. Also, in the first 24-hour after treatment, mRNA expression of p53 was downregulated (P=0.685), but after 4 days it was upregulated (P=0.7) insignificantly. Conclusion It seems that EBNA1 could strongly upregulate p53-inhibiting genes including HDAC1, MDM2, MDM4, and USP7. Moreover, it appears that the effects of USP7 suppression on p53 at protein/mRNA level depend on the cell nature; however, further research is needed.
Collapse
Affiliation(s)
| | - Abdolvahab Moradi
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Seyed Younes Hosseini
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hadi Razavi Nikoo
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Taravat Bamdad
- Department of Virology, School of Medical Sciences, Tarbiat Modarres University, Tehran, Iran.
| | - Mahboobeh Razmkhah
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Jamal Sarvari
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Corresponding author: Jamal Sarvari; Tel: +98 71 32307953; E-mail:
& AlijanTabarraei; Tel: +98 9112733321;
| | - Alijan Tabarraei
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
- Corresponding author: Jamal Sarvari; Tel: +98 71 32307953; E-mail:
& AlijanTabarraei; Tel: +98 9112733321;
| |
Collapse
|