1
|
Tan W, Zhu Y, Chen S. Innovative approach to the detection of circulating tumor biomarkers: multi-dimensional application of liposome technology. Lipids Health Dis 2025; 24:160. [PMID: 40295973 PMCID: PMC12036244 DOI: 10.1186/s12944-025-02578-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/19/2025] [Indexed: 04/30/2025] Open
Abstract
Malignant tumors represent a significant worldwide health challenge, with elevated morbidity and mortality rates necessitating enhanced early identification and individualized treatment. Liposomes, as biomimetic lipid-based nanovesicles, have developed as a multifaceted platform for detecting and treating malignant tumors due to their excellent biocompatibility, stability, and membrane fusion properties. Circulating tumor markers, such as circulating tumor cells (CTCs), extracellular vesicles (EVs), circulating tumor proteins (CTPs), and circulating tumor nucleic acids (ctNAs), play a key role in early cancer diagnosis, disease progression monitoring, and personalized therapy. Liposome-based platforms enable effective molecular recognition, targeted detection, and signal amplification by targeting circulating tumor biomarkers, significantly increasing the potential for early tumor diagnosis and treatment. This review systematically summarizes advancements in the study of liposomes concerning circulating tumor markers, including applications in targeted recognition, early detection, and disease diagnosis, while discussing present problems and prospective applications of existing technology.
Collapse
Affiliation(s)
- Weichu Tan
- Department of Laboratory Medicine, Medical Research Center of Nanfang Hospital, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Provincial Key Laboratory of Single-Cell and Extracellular Vesicles, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yitong Zhu
- Department of Laboratory Medicine, Medical Research Center of Nanfang Hospital, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Provincial Key Laboratory of Single-Cell and Extracellular Vesicles, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Siting Chen
- Department of Laboratory Medicine, Medical Research Center of Nanfang Hospital, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Provincial Key Laboratory of Single-Cell and Extracellular Vesicles, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, People's Republic of China.
| |
Collapse
|
2
|
Horiguchi H, Kadomatsu T, Oike Y. The Two Faces of Angiopoietin-Like Protein 2 in Cancer. Cancer Sci 2025; 116:592-599. [PMID: 39686837 PMCID: PMC11875762 DOI: 10.1111/cas.16434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/18/2024] Open
Abstract
The tumor microenvironment is composed of tumor cells and various stromal cell types, such as immune cells, fibroblasts, and vascular cells. Signaling interactions between tumor and stromal cells orchestrate the tumor microenvironment's contribution to tumor progression. Angiopoietin-like protein 2 (ANGPTL2) is a secreted glycoprotein homologous to angiopoietins. Previous studies indicate that tumor cell-derived ANGPTL2 serves as a tumor promoter. However, recent studies suggest that tumor stroma-derived ANGPTL2 shows tumor-suppressive activity by enhancing anti-tumor immune responses, supporting a dual function for ANGPTL2 in cancer pathology. Such complexity can complicate development of effective therapeutic strategies targeting ANGPTL2. In this Review, we focus on ANGPTL2 activity in the tumor microenvironment and its function in anti-cancer immunity.
Collapse
Affiliation(s)
- Haruki Horiguchi
- Department of Molecular Genetics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Department of Aging and Geriatric Medicine, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Department of Aging and Geriatric Medicine, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| |
Collapse
|
3
|
Thorin E, Labbé P, Lambert M, Mury P, Dagher O, Miquel G, Thorin-Trescases N. Angiopoietin-Like Proteins: Cardiovascular Biology and Therapeutic Targeting for the Prevention of Cardiovascular Diseases. Can J Cardiol 2023; 39:1736-1756. [PMID: 37295611 DOI: 10.1016/j.cjca.2023.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Despite the best pharmacologic tools available, cardiovascular diseases (CVDs) remain a major cause of morbidity and mortality in developed countries. After 2 decades of research, new therapeutic targets, such as angiopoietin-like proteins (ANGPTLs), are emerging. ANGPTLs belong to a family of 8 members, from ANGPTL1 to ANGPTL8; they have structural homology with angiopoietins and are secreted in the circulation. ANGPTLs display a multitude of physiological and pathologic functions; they contribute to inflammation, angiogenesis, cell death, senescence, hematopoiesis, and play a role in repair, maintenance, and tissue homeostasis. ANGPTLs-particularly the triad ANGPTL3, 4, and 8-have an established role in lipid metabolism through the regulation of triacylglycerol trafficking according to the nutritional status. Some ANGPTLs also contribute to glucose metabolism. Therefore, dysregulation in ANGPTL expression associated with abnormal circulating levels are linked to a plethora of CVD and metabolic disorders including atherosclerosis, heart diseases, diabetes, but also obesity and cancers. Because ANGPTLs bind to different receptors according to the cell type, antagonists are therapeutically inadequate. Recently, direct inhibitors of ANGPTLs, mainly ANGPTL3, have been developed, and specific monoclonal antibodies and antisense oligonucleotides are currently being tested in clinical trials. The aim of the current review is to provide an up-to-date preclinical and clinical overview on the function of the 8 members of the ANGPTL family in the cardiovascular system, their contribution to CVD, and the therapeutic potential of manipulating some of them.
Collapse
Affiliation(s)
- Eric Thorin
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada.
| | - Pauline Labbé
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Mélanie Lambert
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada
| | - Pauline Mury
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada
| | - Olina Dagher
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada; Department of Cardiac Sciences, Libin Cardiovascular Institute, Calgary, Alberta, Canada
| | - Géraldine Miquel
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | | |
Collapse
|
4
|
Liu X, Qin J, Nie J, Gao R, Hu S, Sun H, Wang S, Pan Y. ANGPTL2+cancer-associated fibroblasts and SPP1+macrophages are metastasis accelerators of colorectal cancer. Front Immunol 2023; 14:1185208. [PMID: 37691929 PMCID: PMC10483401 DOI: 10.3389/fimmu.2023.1185208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
Background Liver metastasis (LM) is a leading cause of cancer-related deaths in CRC patients, whereas the associated mechanisms have not yet been fully elucidated. Therefore, it is urgently needed to deeply explore novel metastasis accelerators and therapeutic targets of LM-CRC. Methods The bulk RNA sequencing data and clinicopathological information of CRC patients were enrolled from the TCGA and GEO databases. The single-cell RNA sequencing (scRNA-seq) datasets of CRC were collected from and analyzed in the Tumor Immune Single-cell Hub (TISCH) database. The infiltration levels of cancer-associated fibroblasts (CAFs) and macrophages in CRC tissues were estimated by multiple immune deconvolution algorithms. The prognostic values of genes were identified by the Kaplan-Meier curve with a log-rank test. GSEA analysis was carried out to annotate the significantly enriched gene sets. The biological functions of cells were experimentally verified. Results In the present study, hundreds of differentially expressed genes (DEGs) were selected in LM-CRC compared to primary CRC, and these DEGs were significantly associated with the regulation of endopeptidase activity, blood coagulation, and metabolic processes. Then, SPP1, CAV1, ANGPTL2, and COLEC11 were identified as the characteristic DEGs of LM-CRC, and higher expression levels of SPP1 and ANGPTL2 were significantly associated with worse clinical outcomes of CRC patients. In addition, ANGPTL2 and SPP1 mainly distributed in the tumor microenvironment (TME) of CRC tissues. Subsequent scRNA-seq analysis demonstrated that ANGPTL2 and SPP1 were markedly enriched in the CAFs and macrophages of CRC tissues, respectively. Moreover, we identified the significantly enriched gene sets in LM-CRC, especially those in the SPP1+macrophages and ANGPTL2+CAFs, such as the HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION and the HALLMARK_COMPLEMENT. Finally, our in vitro experiments proved that ANGPTL2+CAFs and SPP1+macrophages promote the metastasis of CRC cells. Conclusion Our study selected four characteristic genes of LM-CRC and identified ANGPTL2+CAFs and SPP1+macrophages subtypes as metastasis accelerators of CRC which provided a potential therapeutic target for LM-CRC.
Collapse
Affiliation(s)
- Xiangxiang Liu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jian Qin
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junjie Nie
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Gao
- Division of Clinical Pharmacy, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Shangshang Hu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huiling Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shukui Wang
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuqin Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Circulating proteins as predictive and prognostic biomarkers in breast cancer. Clin Proteomics 2022; 19:25. [PMID: 35818030 PMCID: PMC9275040 DOI: 10.1186/s12014-022-09362-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022] Open
Abstract
Breast cancer (BC) is the most common cancer and among the leading causes of cancer death in women. It is a heterogeneous group of tumours with numerous morphological and molecular subtypes, making predictions of disease evolution and patient outcomes difficult. Therefore, biomarkers are needed to help clinicians choose the best treatment for each patient. For the last years, studies have increasingly focused on biomarkers obtainable by liquid biopsy. Circulating proteins (from serum or plasma) can be used for inexpensive and minimally invasive determination of disease risk, early diagnosis, treatment adjusting, prognostication and disease progression monitoring. We provide here a review of the main published studies on serum proteins in breast cancer and elaborate on the potential of circulating proteins to be predictive and/or prognostic biomarkers in breast cancer.
Collapse
|
6
|
Zhang Y, Hua S, Jiang Q, Xie Z, Wu L, Wang X, Shi F, Dong S, Jiang J. Identification of Feature Genes of a Novel Neural Network Model for Bladder Cancer. Front Genet 2022; 13:912171. [PMID: 35719407 PMCID: PMC9198295 DOI: 10.3389/fgene.2022.912171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The combination of deep learning methods and oncogenomics can provide an effective diagnostic method for malignant tumors; thus, we attempted to construct a reliable artificial neural network model as a novel diagnostic tool for Bladder cancer (BLCA). Methods: Three expression profiling datasets (GSE61615, GSE65635, and GSE100926) were downloaded from the Gene Expression Omnibus (GEO) database. GSE61615 and GSE65635 were taken as the train group, while GSE100926 was set as the test group. Differentially expressed genes (DEGs) were filtered out based on the logFC and FDR values. We also performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to explore the biological functions of the DEGs. Consequently, we utilized a random forest algorithm to identify feature genes and further constructed a neural network model. The test group was given the same procedures to validate the reliability of the model. We also explored immune cells' infiltration degree and correlation coefficients through the CiberSort algorithm and corrplot R package. The qRT-PCR assay was implemented to examine the expression level of the feature genes in vitro. Results: A total of 265 DEGs were filtered out and significantly enriched in muscle system processes, collagen-containing and focal adhesion signaling pathways. Based on the random forest algorithm, we selected 14 feature genes to construct the neural network model. The area under the curve (AUC) of the training group was 0.950 (95% CI: 0.850-1.000), and the AUC of the test group was 0.667 (95% CI: 0.333-1.000). Besides, we observed significant differences in the content of immune infiltrating cells and the expression levels of the feature genes. Conclusion: After repeated verification, our neural network model had clinical feasibility to identify bladder cancer patients and provided a potential target to improve the management of BLCA.
Collapse
Affiliation(s)
- Yongqing Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Hua
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiheng Jiang
- Department of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiwen Xie
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Wu
- Department of Urology, Shanghai General Hospital, Nanjing Medical University School of Medicine, Shanghai, China
| | - Xinjie Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Shi
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengli Dong
- Nursing Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juntao Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Zhao W, Morinaga J, Ukawa S, Endo M, Yamada H, Kawamura T, Wakai K, Tsushita K, Ando M, Suzuki K, Oike Y, Tamakoshi A. Plasma angiopoietin-like protein 2 levels and mortality risk among younger-old Japanese people: a population-based case-cohort study. J Gerontol A Biol Sci Med Sci 2022; 77:1150-1158. [PMID: 35037044 DOI: 10.1093/gerona/glac017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Indexed: 11/14/2022] Open
Abstract
Aging is important medical and social problem. Excessive angiopoietin-like protein (ANGPTL)-2 signaling causes chronic tissue inflammation, promoting development and progression of aging-related diseases. Moreover, circulating ANGPTL2 levels reportedly predict risk of some aging-related diseases and subsequent death. However, there are as yet no reports of whether circulating ANGPTL2 levels predict vital prognosis in younger-old, community-dwelling populations. This study investigated associations between plasma ANGPTL2 levels and all-cause and specific-cause mortality in this population. The case-cohort study was abstracted from an on-going, age-specific prospective cohort study: the New Integrated Suburban Seniority Investigation Project. This project enrolled 3073 participants aged 64 years at the beginning of the investigation from 1996 through 2005. A sub-cohort of 714 randomly sampled participants plus 387 cases representing deceased participants followed through 2015 underwent survival analysis. Plasma ANGPTL2 concentrations were positively associated with >80% and 100% higher risk of all-cause mortality and cancer mortality, respectively, after adjustment for gender, smoking, alcohol consumption, walking time, sleep duration, caloric intake, medical status, disease history, BMI, and triglyceride, creatinine, uric acid, and high sensitivity C-reactive protein levels. More robust association between ANGPTL2 levels and all-cause and cancer mortality was seen in subjects with either frailties or with lifestyles of heavier drinking or current smoking. Elevated plasma ANGPTL2 levels are associated with high all-cause and cancer mortality in a community-dwelling sample of younger-old adults. These findings expand our knowledge of human aging and associated diseases.
Collapse
Affiliation(s)
- Wenjing Zhao
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China.,Department of Public Health, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Jun Morinaga
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shigekazu Ukawa
- Research Unit of Advanced Interdisciplinary Care Science, Graduate School of Human Life Science, Osaka City University, Osaka, Japan
| | - Motoyoshi Endo
- Department of Molecular Biology, University of Occupational and Environmental Health, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, Aichi, Japan
| | | | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kazuyo Tsushita
- Comprehensive Health Science Center, Aichi Health Promotion Public Interest Foundation, Chita, Aichi, Japan
| | - Masahiko Ando
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Aichi, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akiko Tamakoshi
- Department of Public Health, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
8
|
Thorin-Trescases N, Labbé P, Mury P, Lambert M, Thorin E. Angptl2 is a Marker of Cellular Senescence: The Physiological and Pathophysiological Impact of Angptl2-Related Senescence. Int J Mol Sci 2021; 22:12232. [PMID: 34830112 PMCID: PMC8624568 DOI: 10.3390/ijms222212232] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Cellular senescence is a cell fate primarily induced by DNA damage, characterized by irreversible growth arrest in an attempt to stop the damage. Senescence is a cellular response to a stressor and is observed with aging, but also during wound healing and in embryogenic developmental processes. Senescent cells are metabolically active and secrete a multitude of molecules gathered in the senescence-associated secretory phenotype (SASP). The SASP includes inflammatory cytokines, chemokines, growth factors and metalloproteinases, with autocrine and paracrine activities. Among hundreds of molecules, angiopoietin-like 2 (angptl2) is an interesting, although understudied, SASP member identified in various types of senescent cells. Angptl2 is a circulatory protein, and plasma angptl2 levels increase with age and with various chronic inflammatory diseases such as cancer, atherosclerosis, diabetes, heart failure and a multitude of age-related diseases. In this review, we will examine in which context angptl2 was identified as a SASP factor, describe the experimental evidence showing that angptl2 is a marker of senescence in vitro and in vivo, and discuss the impact of angptl2-related senescence in both physiological and pathological conditions. Future work is needed to demonstrate whether the senescence marker angptl2 is a potential clinical biomarker of age-related diseases.
Collapse
Affiliation(s)
- Nathalie Thorin-Trescases
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
| | - Pauline Labbé
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Pauline Mury
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Mélanie Lambert
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Eric Thorin
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
- Department of Surgery, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
9
|
Plangger A, Haslik W, Rath B, Neumayer C, Hamilton G. Interactions of BRCA1-mutated Breast Cancer Cell Lines with Adipose-derived Stromal Cells (ADSCs). J Mammary Gland Biol Neoplasia 2021; 26:235-245. [PMID: 34228231 PMCID: PMC8566642 DOI: 10.1007/s10911-021-09493-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/17/2021] [Indexed: 12/04/2022] Open
Abstract
Lipofilling may constitute a technique to assist reconstruction of breasts following prophylactic mastectomy for patients with mutated BRCA1 or BRCA2 genes. However, to date it is not clear whether adipose-derived stromal cells (ADSCs) increase the risk of tumor initiation and progression in this situation. Therefore, the interactions of BRCA1 mutated breast cancer cell lines with normal ADSCs were investigated in the present study. Characteristics of MDA-MB-436 (BRCA1 c.5277 + 1G > A) and HCC1937 (BRCA1 p.Gln1756.Profs*74) were compared to MDA-MB-231 and T47D BRCA1/2 wild-type breast cancer cell lines. ADSCs were cultivated from lipoaspirates of a panel of BRCA1/2- wildtype patients. Interactions of conditioned medium (CM) of these cells with the breast cancer lines were studied using proliferation and migration assays as well as adipokine expression western blot arrays. CM of ADSCs exhibit a dose-dependent stimulation of the proliferation of the breast cancer cell lines. However, of the ADSC preparations tested, only 1 out of 18 samples showed a significant higher stimulation of BRCA1-mutated MDA-MB-436 versus wildtype MDA-MB-231 cells, and all CM revealed lower stimulatory activity for BRCA1-mutated HCC1937 versus wildtype T47D cells. Additionally, migration of breast cancer cells in response to CM of ADSCs proved to be equivalent or slower for BRCA1/2 mutated versus nonmutated cancer cells and, with exception of angiopoietin-like 2, induced expression of adipokines showed no major difference. Effects of media conditioned by normal ADSCs showed largely comparable effects on BRCA1-mutated and wildtype breast cancer cell lines thus advocating lipofilling, preferentially employing allogeneic non-mutated ADSCs.
Collapse
Affiliation(s)
- Adelina Plangger
- Department of Vascular Surgery, Medical University of Vienna, Vienna, Austria
| | - Werner Haslik
- Department for General Gynecology and Gynecologic Oncology, Medical University of Vienna, Vienna, Austria
| | - Barbara Rath
- Department of Vascular Surgery, Medical University of Vienna, Vienna, Austria
| | - Christoph Neumayer
- Department of Vascular Surgery, Medical University of Vienna, Vienna, Austria
| | - Gerhard Hamilton
- Department of Vascular Surgery, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Veyssière H, Lusho S, Molnar I, Kossai M, Bernadach M, Abrial C, Bidet Y, Radosevic-Robin N, Durando X. INSTIGO Trial: Evaluation of a Plasma Protein Profile as a Predictive Biomarker for Metastatic Relapse of Triple Negative Breast Cancer. Front Oncol 2021; 11:653370. [PMID: 34249690 PMCID: PMC8268015 DOI: 10.3389/fonc.2021.653370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/09/2021] [Indexed: 12/31/2022] Open
Abstract
Background Triple negative breast cancer (TNBC) accounts for 10-20% of breast cancers but has no specific therapy. While TNBC may be more sensitive to chemotherapy than other types of breast cancer, it has a poor prognosis. Most TNBC relapses occur during the five years following treatment, however predictive biomarkers of metastatic relapse are still lacking. High tumour-infiltrating lymphocytes (TILs) levels before and after neo-adjuvant chemotherapy (NAC) are associated with lower relapse risk and longer survival but TILs assessment is highly error-prone and still not introduced into the clinic. Therefore, having reliable biomarker of relapse, but easier to assess, remains essential for TNBC management. Searching for such biomarkers among serum/plasma proteins, circulating tumoral DNA (ctDNA) and blood cells appear relevant. Methods This single-centre and prospective study aims to discover predictive biomarkers of TNBC relapse and particularly focuses on plasma proteins. Blood samples will be taken at diagnosis, on the day of first-line or post-NAC surgery, on the day of radiotherapy start, then 6 months and one year after radiotherapy. A blood sample will be taken at the time of metastatic relapse diagnosis. Blood samples will be used for circulating protein quantification, blood cell counts and circulating tumour DNA quantification. A tumour RNA signature, based on the analysis of the RNA expression of 6 genes, will also be tested from the initial biopsy taken routinely. In NAC patients, TILs quantity will be assessed on TNBC pre-treatment biopsy and surgical specimen. Ethics and Dissemination INSTIGO belongs to category 2 interventional research on humans. This study has been approved by the SUD-EST IV ethics committee and is conducted in accordance with the Declaration of Helsinki and General Data Protection Regulation (GDPR). Study findings will be published in peer-reviewed medical journals. Clinical Trial Registration ClinicalTrials.gov, identifier NCT04438681.
Collapse
Affiliation(s)
- Hugo Veyssière
- Université Clermont Auvergne, INSERM UMR 1240 « Imagerie Moléculaire et Stratégies Théranostiques », Centre Jean PERRIN, Clermont-Ferrand, France.,Division de Recherche Clinique, Délégation Recherche Clinique & Innovation, Centre Jean PERRIN, Clermont-Ferrand, France.,Centre d'Investigation Clinique, UMR501, Clermont-Ferrand, France
| | - Sejdi Lusho
- Université Clermont Auvergne, INSERM UMR 1240 « Imagerie Moléculaire et Stratégies Théranostiques », Centre Jean PERRIN, Clermont-Ferrand, France.,Division de Recherche Clinique, Délégation Recherche Clinique & Innovation, Centre Jean PERRIN, Clermont-Ferrand, France.,Centre d'Investigation Clinique, UMR501, Clermont-Ferrand, France
| | - Ioana Molnar
- Université Clermont Auvergne, INSERM UMR 1240 « Imagerie Moléculaire et Stratégies Théranostiques », Centre Jean PERRIN, Clermont-Ferrand, France.,Division de Recherche Clinique, Délégation Recherche Clinique & Innovation, Centre Jean PERRIN, Clermont-Ferrand, France.,Centre d'Investigation Clinique, UMR501, Clermont-Ferrand, France
| | - Myriam Kossai
- Université Clermont Auvergne, INSERM UMR 1240 « Imagerie Moléculaire et Stratégies Théranostiques », Centre Jean PERRIN, Clermont-Ferrand, France.,Département d'anatomie et de cytologie pathologiques, Centre Jean PERRIN, Clermont-Ferrand, France
| | - Maureen Bernadach
- Université Clermont Auvergne, INSERM UMR 1240 « Imagerie Moléculaire et Stratégies Théranostiques », Centre Jean PERRIN, Clermont-Ferrand, France.,Division de Recherche Clinique, Délégation Recherche Clinique & Innovation, Centre Jean PERRIN, Clermont-Ferrand, France
| | - Catherine Abrial
- Université Clermont Auvergne, INSERM UMR 1240 « Imagerie Moléculaire et Stratégies Théranostiques », Centre Jean PERRIN, Clermont-Ferrand, France.,Division de Recherche Clinique, Délégation Recherche Clinique & Innovation, Centre Jean PERRIN, Clermont-Ferrand, France.,Centre d'Investigation Clinique, UMR501, Clermont-Ferrand, France
| | - Yannick Bidet
- Université Clermont Auvergne, INSERM UMR 1240 « Imagerie Moléculaire et Stratégies Théranostiques », Centre Jean PERRIN, Clermont-Ferrand, France.,Département d'oncogénétique, Laboratoire d'Oncologie Moléculaire, Centre Jean PERRIN, Clermont-Ferrand, France
| | - Nina Radosevic-Robin
- Université Clermont Auvergne, INSERM UMR 1240 « Imagerie Moléculaire et Stratégies Théranostiques », Centre Jean PERRIN, Clermont-Ferrand, France.,Département d'anatomie et de cytologie pathologiques, Centre Jean PERRIN, Clermont-Ferrand, France
| | - Xavier Durando
- Université Clermont Auvergne, INSERM UMR 1240 « Imagerie Moléculaire et Stratégies Théranostiques », Centre Jean PERRIN, Clermont-Ferrand, France.,Division de Recherche Clinique, Délégation Recherche Clinique & Innovation, Centre Jean PERRIN, Clermont-Ferrand, France.,Centre d'Investigation Clinique, UMR501, Clermont-Ferrand, France
| |
Collapse
|
11
|
Takeshita Y, Motohara T, Kadomatsu T, Doi T, Obayashi K, Oike Y, Katabuchi H, Endo M. Angiopoietin-like protein 2 decreases peritoneal metastasis of ovarian cancer cells by suppressing anoikis resistance. Biochem Biophys Res Commun 2021; 561:26-32. [PMID: 34000514 DOI: 10.1016/j.bbrc.2021.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022]
Abstract
Peritoneal metastasis is a common mode of spread of ovarian cancer. Despite therapeutic advances, some patients have intractable peritoneal metastasis. Therefore, in-depth characterization of the molecular mechanism of peritoneal metastasis is a key imperative. Angiopoietin-like protein 2 (ANGPTL2) is an inflammatory factor which activates NF-κB signaling and plays an important role in the pathogenesis of various inflammatory diseases including cancers, such as lung and breast cancer. In this study, we examined the role of ANGPTL2 in ovarian cancer peritoneal metastasis. We observed no difference of cell proliferation between ANGPTL2-expressing and control cells. In the mouse intraperitoneal xenograft model, formation of peritoneal metastasis by ANGPTL2-expressing cells was significantly decreased compared to control. In the in vitro analysis, the expressions of integrin α5β1, α6, and β4, but not those of αvβ3, α3, α4, and β1, were significantly decreased in ANGPTL2-expressing cells compared to control cells. ANGPTL2-expressing cells showed significantly inhibited adherence to laminin compared to control. In addition, we observed upregulation of anoikis (a form of programmed cell death occurring under an anchorage-independent condition) and significant decrease in the expression of Bcl-2 in ANGPTL2-expressing cells as compared to control cells. These results suggest that ANGPTL2 expression in ovarian cancer cells represses peritoneal metastasis by suppressing anoikis resistance.
Collapse
Affiliation(s)
- Yuko Takeshita
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan; Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takeshi Motohara
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Tomomitsu Doi
- Department of Molecular Biology, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Kunie Obayashi
- Department of Molecular Biology, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hidetaka Katabuchi
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Motoyoshi Endo
- Department of Molecular Biology, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan.
| |
Collapse
|
12
|
Influence of Angptl1 on osteoclast formation and osteoblastic phenotype in mouse cells. BMC Musculoskelet Disord 2021; 22:398. [PMID: 33910546 PMCID: PMC8082671 DOI: 10.1186/s12891-021-04278-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/15/2021] [Indexed: 01/19/2023] Open
Abstract
Background Osteoblasts and osteoclasts play important roles during the bone remodeling in the physiological and pathophysiological states. Although angiopoietin family Angiopoietin like proteins (Angptls), including Angptl1, have been reported to be involved in inflammation, lipid metabolism and angiogenesis, the roles of Angptl1 in bone have not been reported so far. Methods We examined the effects of Angptl1 on the osteoblast and osteoclast phenotypes using mouse cells. Results Angptl1 significantly inhibited the osteoclast formation and mRNA levels of tartrate-resistant acid phosphatase and cathepsin K enhanced by receptor activator of nuclear factor κB ligand in RAW 264.7 and mouse bone marrow cells. Moreover, Angptl1 overexpression significantly enhanced Osterix mRNA levels, alkaline phosphatase activity and mineralization induced by bone morphogenetic protein-2 in ST2 cells, although it did not affect the expression of osteogenic genes in MC3T3-E1 and mouse osteoblasts. On the other hand, Angptl1 overexpression significantly reduced the mRNA levels of peroxisome proliferator-activated receptor γ and adipocyte protein-2 as well as the lipid droplet formation induced by adipogenic medium in 3T3-L1 cells. Conclusions The present study first indicated that Angptl1 suppresses and enhances osteoclast formation and osteoblastic differentiation in mouse cells, respectively, although it inhibits adipogenic differentiation of 3T3-L1 cells. These data suggest the possibility that Angptl1 might be physiologically related to bone remodeling.
Collapse
|
13
|
Screening and identification of potential prognostic biomarkers in bladder urothelial carcinoma: Evidence from bioinformatics analysis. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Chen E, Tang C, Peng K, Cheng X, Wei Y, Liu T. ANGPTL6-mediated angiogenesis promotes alpha fetoprotein-producing gastric cancer progression. Pathol Res Pract 2019; 215:152454. [PMID: 31146977 DOI: 10.1016/j.prp.2019.152454] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 05/17/2019] [Indexed: 02/08/2023]
Abstract
Alpha-fetoprotein (AFP)-producing gastric cancer (AFPGC) is regarded as a rare but highly malignant gastric adenocarcinoma subtype and its clinic pathological presentation mimics hepatocellular carcinoma. However, the underlying mechanism of this disease remains elusive. The level of ANGPTL6 in AFPGC cell lines is much higher than that of common types of gastric cancer cells. A high level of ANGPTL6 confers a poor prognosis and is correlated with the expression of CD34 (an endothelial cell marker). ANGPTL6 promotes endothelial cell migration and tube formation, Moreover, ANGPTL6 knockdown inhibits cancer cell apoptosis and invasiveness. Mechanistically, ANGPTL6 activates the ERK1/2 and AKT pathways. Treatment of ERK1/2 or AKT inhibitor can attenuated cell migration and tube formation. ANGPTL6 loss results in tumor growth in vivo. Our study revealed that ANGPTL6 is an important driver gene of angiogenesis in AFPGC development. These findings provide not only an effective biomarker for diagnosis but also an attractive therapeutic target for use in AFPGC patients.
Collapse
Affiliation(s)
- Erbao Chen
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cheng Tang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ke Peng
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xi Cheng
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yichou Wei
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China; Center of Evidence-based Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Yang L, Sun R, Wang Y, Fu Y, Zhang Y, Zheng Z, Ji Z, Zhao D. Expression of ANGPTL2 and its impact on papillary thyroid cancer. Cancer Cell Int 2019; 19:204. [PMID: 31384179 PMCID: PMC6668118 DOI: 10.1186/s12935-019-0908-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 07/15/2019] [Indexed: 02/08/2023] Open
Abstract
Background Although the most thyroid carcinoma patients have good prognosis, around 20% of papillary thyroid carcinoma (PTC) patients have a high rate of metastasis and recurrence after routine treatment, which causes high lethality with these patients. Tumor proliferation, metastasis, and invasion are important predictors of PTC invasiveness and are key factors in cancer-related death. Angiopoietin-like 2 (ANGPTL2), a secreted protein which belongs to the angiopoietin (ANGPTL) family, was reported to be involved in the regulation of several different type of cancer cell proliferation and metastasis. However, whether ANGPTL2 plays a role in the progression of PTC, particularly in metastasis and recurrence of PTC, remains unclear. Hence, the purpose of this study was to evaluate the level of ANGPTL2 in PTC and normal thyroid, as well as para-cancerous tissue. Furthermore, the impact of ANGPTL2 on PTC cell proliferation, metastasis, recurrence and invasion was assessed to investigate the possibility whether ANGPTL2 may become a novel target for PTC therapy and cancer prognosis. Materials and methods The level of ANGPTL2 in PTC and para-cancerous tissue was assessed by immunohistochemistry. The biological effect of ANGPTL2 on thyroid cancer cell proliferation and metastasis was investigated by the Cell Counting Kit-8 (CCK8) assay, cell scratch test, and transwell assay. Correlations of ANGPTL2 expression levels with proliferation, migration, and metastasis of thyroid cancer were assessed with the TCGA data set and analyzed by gene set enrichment analysis. Receiver operating characteristic analysis was used to evaluate the utility of ANGPTL2 as a biomarker for prediction of thyroid cancer. Survival analysis was performed using the thyroid cancer database in K-M Plotter to detect correlations between survival time and ANGPTL2 levels. Results Current study revealed that: (1) ANGPTL2 was highly expressed in thyroid cancer in comparison with adjacent normal thyroid tissue; (2) ANGPTL2 expression was increased with thyroid tumor progression; (3) ANGPTL2 increased proliferation of thyroid cancer cells; (4) ANGPTL2 promoted migration and invasion of thyroid cancer cells; (5) high level of ANGPTL2 in thyroid cancer patients were significantly associated with a poor prognosis. The patients showed a higher metastasis and recurrence rate. Conclusion ANGPTL2 promoted and enhanced proliferation, metastasis, and invasion of thyroid cancer cells. ANGPTL2 may be considered as a potential biomarker for diagnosis and prognosis of thyroid cancer patients. Further evaluation needs to be done to analyze the possibility of taking ANGPTL2 as a prognostic marker and therapeutic target for papillary thyroid cancer.
Collapse
Affiliation(s)
- Longyan Yang
- 1Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Luhe Hospital, Capital Medical University, Beijing, 101149 China
| | - Rongxin Sun
- 1Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Luhe Hospital, Capital Medical University, Beijing, 101149 China
| | - Yan Wang
- 1Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Luhe Hospital, Capital Medical University, Beijing, 101149 China
| | - Ying Fu
- 1Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Luhe Hospital, Capital Medical University, Beijing, 101149 China
| | - Yuanyuan Zhang
- 1Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Luhe Hospital, Capital Medical University, Beijing, 101149 China
| | - Zhaohui Zheng
- 1Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Luhe Hospital, Capital Medical University, Beijing, 101149 China
| | - Zhili Ji
- 2Department of General Surgery, Luhe Hospital, Capital Medical University, Beijing, 101149 China
| | - Dong Zhao
- 1Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Luhe Hospital, Capital Medical University, Beijing, 101149 China
| |
Collapse
|
16
|
Alshabi AM, Vastrad B, Shaikh IA, Vastrad C. Identification of Crucial Candidate Genes and Pathways in Glioblastoma Multiform by Bioinformatics Analysis. Biomolecules 2019; 9:biom9050201. [PMID: 31137733 PMCID: PMC6571969 DOI: 10.3390/biom9050201] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/17/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023] Open
Abstract
The present study aimed to investigate the molecular mechanisms underlying glioblastoma multiform (GBM) and its biomarkers. The differentially expressed genes (DEGs) were diagnosed using the limma software package. The ToppGene (ToppFun) was used to perform pathway and Gene Ontology (GO) enrichment analysis of the DEGs. Protein-protein interaction (PPI) networks, extracted modules, miRNA-target genes regulatory network and TF-target genes regulatory network were used to obtain insight into the actions of DEGs. Survival analysis for DEGs was carried out. A total of 590 DEGs, including 243 up regulated and 347 down regulated genes, were diagnosed between scrambled shRNA expression and Lin7A knock down. The up-regulated genes were enriched in ribosome, mitochondrial translation termination, translation, and peptide biosynthetic process. The down-regulated genes were enriched in focal adhesion, VEGFR3 signaling in lymphatic endothelium, extracellular matrix organization, and extracellular matrix. The current study screened the genes in the PPI network, extracted modules, miRNA-target genes regulatory network, and TF-target genes regulatory network with higher degrees as hub genes, which included NPM1, CUL4A, YIPF1, SHC1, AKT1, VLDLR, RPL14, P3H2, DTNA, FAM126B, RPL34, and MYL5. Survival analysis indicated that the high expression of RPL36A and MRPL35 were predicting longer survival of GBM, while high expression of AP1S1 and AKAP12 were predicting shorter survival of GBM. High expression of RPL36A and AP1S1 were associated with pathogenesis of GBM, while low expression of ALPL was associated with pathogenesis of GBM. In conclusion, the current study diagnosed DEGs between scrambled shRNA expression and Lin7A knock down samples, which could improve our understanding of the molecular mechanisms in the progression of GBM, and these crucial as well as new diagnostic markers might be used as therapeutic targets for GBM.
Collapse
Affiliation(s)
- Ali Mohamed Alshabi
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran 61441, Saudi Arabia.
| | - Basavaraj Vastrad
- Department of Pharmaceutics, SET`S College of Pharmacy, Dharwad, Karnataka 580002, India.
| | - Ibrahim Ahmed Shaikh
- Department of Pharmacology, College of Pharmacy, Najran University, Najran 61441, Saudi Arabia.
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India.
| |
Collapse
|
17
|
Satou G, Maji D, Isamoto T, Oike Y, Endo M. UV-B-activated B16 melanoma cells or HaCaT keratinocytes accelerate signaling pathways associated with melanogenesis via ANGPTL 2 induction, an activity antagonized by Chrysanthemum extract. Exp Dermatol 2019; 28:152-160. [PMID: 30554436 PMCID: PMC6850386 DOI: 10.1111/exd.13862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 01/30/2023]
Abstract
Sunburn causes inflammation, which increases melanin production in skin and causes hyperpigmentation. Angiopoietin-like protein (ANGPTL) 2 is an inflammatory mediator induced in sun-exposed skin areas. However, whether ANGPTL2 functions in melanin production remains unclear. To assess this possibility, we overexpressed Angptl2 in the melanoma line B16 and in the keratinocyte line HaCaT. Relative to controls, Angptl2-expressing B16 cells produced higher melanin levels via tyrosinase induction. Accordingly, Angptl2-expressing HaCaT cells secreted relatively high levels of both endothelin-1 (ET-1) and α-melanocyte-stimulating hormone (α-MSH). Moreover, treatment with an extract from Chrysanthemum indicum × Erigeron annuus (CE) suppressed ANGPTL2 expression and repressed tyrosinase induction in melanocytes and of α-MSH and ET-1 in keratinocytes. Our data suggest that ANGPTL2 expression in keratinocytes and melanin-producing cells accelerates pigment production and that treatment of skin with a CE extract could prevent melanin accumulation.
Collapse
Affiliation(s)
- Gaku Satou
- Saishunkan Pharmaceutical Co. LtdKumamotoJapan
| | | | | | - Yuichi Oike
- Department of Molecular GeneticsGraduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Motoyoshi Endo
- Department of Molecular GeneticsGraduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Department of Molecular BiologyUniversity of Occupational and Environmental Health, JapanFukuokaJapan
| |
Collapse
|
18
|
Abstract
Angiopoietins play important roles in angiogenesis and the maintenance of hematopoietic stem cells. Angiopoietin-like proteins (ANGPTLs) are identified as proteins structurally similar to angiopoietins, and the ANGPTL family now consists of eight members. ANGPTLs are secretary proteins, and some ANGPTLs are not only angiogenic factors but also proteins with multiple functions such as glucose metabolism, lipid metabolism, redox regulation and chronic inflammation. Chronic inflammation is one of the key factors in carcinogenesis and cancer growth, proliferation, invasion and metastasis. ANGPTL 2, 3, 4, 6 and 7 are pro-inflammatory factors and regulate cancer progression, while ANGPTL1 inhibits tumor angiogenesis and metastasis. In this review, we describe the roles of ANGPTLs in cancer progression and discuss the possibility of disturbing the progression of cancer by regulating ANGPTLs expression.
Collapse
Affiliation(s)
- Motoyoshi Endo
- Department of Molecular Biology, University of Occupational and Environmental Health, Japan
| |
Collapse
|
19
|
Angiopoietin-like protein 3 blocks nuclear import of FAK and contributes to sorafenib response. Br J Cancer 2018; 119:450-461. [PMID: 30033448 PMCID: PMC6134083 DOI: 10.1038/s41416-018-0189-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/11/2018] [Accepted: 06/25/2018] [Indexed: 01/08/2023] Open
Abstract
Background Poor drug response of sorafenib is a major challenge which reduces clinical benefit of renal cell carcinoma (RCC) patients. It is therefore of great clinical significance to elucidate the underlying mechanism to restore the therapeutic response to sorafenib. Methods Angiopoietin-like protein 3 (ANGPTL3) protein levels were measured by western blot and immunohistochemistry in two cohorts of RCC patients. Loss-of-function and gain-of-function experiments were performed to investigate the biological roles of ANGPTL3 in response to sorafenib treatment in RCC cells. Human proteome microarray and immunoprecipitation analysis were performed to explore the molecular mechanisms underlying the functions of ANGPTL3. Results ANGPTL3 was upregulated in sorafenib-responsive RCC, which correlated with clinically good sorafenib response. Knockdown of ANGPTL3 conferred sorafenib-tolerance traits to RCC cells, whereas overexpression of ANGPTL3 restored sorafenib sensitivity in RCC cells. Mechanistically, ANGPTL3 bound to Focal Adhesion Kinase(FAK) and restained sorafenib induced nuclear translocation of FAK, leading to attenuate the ubiquitination of p53, which contributed to cellular apoptosis and enhanced sorafenib response. Conclusions ANGPTL3 may be a novel predictor for the response of sorafenib therapy in RCC patients, and a potential target in improving its therapeutic effect.
Collapse
|
20
|
ANGPTL2 deletion inhibits osteoclast generation by modulating NF-κB/MAPKs/Cyclin pathways. Biochem Biophys Res Commun 2018; 503:1471-1477. [PMID: 30031603 DOI: 10.1016/j.bbrc.2018.07.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 07/12/2018] [Indexed: 02/05/2023]
Abstract
Osteoclasts are multinucleated cells essential for bone-resorption. Successful repair of bone defciencies still remains a great challenge worldwide. The signaling factor angiopoietin-like protein 2 (ANGPTL2), one of eight ANGPTL proteins, functions in maintenance of tissue homeostasis partly through regulating inflammation. In the study, ANGPTL2 expression was promoted during osteoclast development and that suppressing ANGPTL2 alleviated osteoclast production regulated by macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL). The results suggested that ANGPTL2 knockdown inhibited M-CSF-caused proliferation of osteoclast precursor cells. Further, ANGPTL2 silence reduced nuclear factor of activated T cell c 1 (NFATC1) and NFATC4 expressions in M-CSF-treated cells, along with decreased Runx2, OPN and Colla1. Moreover, silencing ANGPTL2 down-regulated M-CSF-promoted expressions of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and chemoattractant protein-1 (CCL-2). Consistently, ANGPTL2 knockdown reduced M-CSF-enhanced activation of IKKα, IκBα and nuclear factor κB (NF-κB) and mitogen-activated protein kinases (MAPKs) (p38 MAPK, ERK1/2 MAPK and JNK MAPK). Additionally, knockdown of ANGPTL2 inhibited the induction of Cyclin D1, Cyclin D2 and Cyclin E1 due to M-CSF exposure. In vivo, we confirmed that ANGPTL2 knockout (KO) mice were protected against osteoporosis induced by ovariectomy (OVX), as proved by the improved bone loss and bone mineral density (BMD). Decreased expression of NFATCs was also observed in OVX-induced mice in the absence of ANGPTL2. Elevated release of pro-inflammatory cytokines was abrogated by ANGPTL2 knockout in femoral heads of mice with OVX operation, accompanied with a significant reduction of phosphorylated NF-κB and MAPKs signaling pathways. And down-regulated expression of Cyclin D1, Cyclin D2 and Cyclin E1 was observed in OVX-operated mice with ANGPTL2 knockout. Therefore, our study indicated that ANGPTL2 played an essential role in osteoclast generation through regulating the proliferation and inflammation of osteoclast lineage cells, providing new insights into the therapeutic strategy to alleviate bone loss.
Collapse
|
21
|
Angiopoietin-Like Proteins in Angiogenesis, Inflammation and Cancer. Int J Mol Sci 2018; 19:ijms19020431. [PMID: 29389861 PMCID: PMC5855653 DOI: 10.3390/ijms19020431] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 12/27/2022] Open
Abstract
Altered expression of secreted factors by tumor cells or cells of the tumor microenvironment is a key event in cancer development and progression. In the last decade, emerging evidences supported the autocrine and paracrine activity of the members of the Angiopoietin-like (ANGPTL) protein family in angiogenesis, inflammation and in the regulation of different steps of carcinogenesis and metastasis development. Thus, ANGPTL proteins become attractive either as prognostic or predictive biomarkers, or as novel target for cancer treatment. Here, we outline the current knowledge about the functions of the ANGPTL proteins in angiogenesis, cancer progression and metastasis. Moreover, we discuss the most recent evidences sustaining their role as prognostic or predictive biomarkers for cancer therapy. Although the role of ANGPTL proteins in cancer has not been fully elucidated, increasing evidence suggest their key effects in the proliferative and invasive properties of cancer cells. Moreover, given the common overexpression of ANGPTL proteins in several aggressive solid tumors, and their role in tumor cells and cells of the tumor microenvironment, the field of research about ANGPTL proteins network may highlight new potential targets for the development of future therapeutic strategies.
Collapse
|
22
|
Oike Y, Tian Z, Miyata K, Morinaga J, Endo M, Kadomatsu T. ANGPTL2 - A New Causal Player in Accelerating Heart Disease Development in the Aging. Circ J 2017; 81:1379-1385. [PMID: 28867689 DOI: 10.1253/circj.cj-17-0854] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In parallel with the increase in the number of elderly people worldwide, the number of patients with heart disease is also rapidly increasing. Of the heart diseases, cardiovascular disease (CVD) and heart failure (HF) are strongly associated with adverse health outcomes that decrease productivity in later years. Recently, ANGPTL2, a secreted glycoprotein and member of the angiopoietin-like protein family, has received attention as a causal player in the development of CVD and HF. Prolonged ANGPTL2 autocrine/paracrine signaling in vascular tissue leads to chronic inflammation and pathologic tissue remodeling, accelerating CVD development. Excess ANGPTL2 autocrine/paracrine signaling induced in the pathologically stressed heart accelerates cardiac dysfunction by decreasing myocardial energy metabolism. Conversely, ANGPTL2 inactivation in vascular tissue and the heart delays development or progression of CVD and HF, respectively. Moreover, there is increased evidence for an association between elevated circulating ANGPTL2 levels and CVD and HF. Interestingly, ANGPTL2 expression is also associated with cellular senescence, which may promote premature aging and development of aging-associated diseases, including CVD and HF. Overall, ANGPTL2 autocrine/paracrine signaling is a new factor in accelerating heart disease development in the aging. Here, we focus on current topics relevant to ANGPTL2 function in heart disease.
Collapse
Affiliation(s)
- Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University
| | - Zhe Tian
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University
| | - Jun Morinaga
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University
| | - Motoyoshi Endo
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University
| |
Collapse
|
23
|
High Circulating Levels of ANGPTL2: Beyond a Clinical Marker of Systemic Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1096385. [PMID: 29138671 PMCID: PMC5613648 DOI: 10.1155/2017/1096385] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/25/2017] [Accepted: 08/02/2017] [Indexed: 12/18/2022]
Abstract
Angiopoietin-like 2 (ANGPTL2) is a proinflammatory protein belonging to the angiopoietin-like family. ANGPTL2 is secreted and detected in the systemic circulation. Different observational clinical studies reported that circulating levels of ANGPTL2 increase significantly in various chronic inflammatory diseases and showed associations between ANGPTL2 levels and diagnosis and/or prognosis of cardiovascular diseases, diabetes, chronic kidney disease, and various types of cancers. However, these studies did not address the following questions: (a) what are the sources of circulating ANGPTL2? (b) How and by which mechanisms an increase in circulating ANGPTL2 contributes to the pathogenesis of chronic inflammatory diseases? (c) Does an increase in circulating levels of ANGPTL2 measured in a well-defined chronic medical condition originate from a specific cell type? Mechanistic hypotheses have been proposed based on studies performed in mice and cultured cells, and proinflammatory, prooxidative, proangiogenic, proliferative, and antiapoptotic properties of ANGPTL2 have been reported. The aim of this review is to propose answers concerning the potential sources of circulating ANGPTL2 and its common pathological properties associated with various chronic inflammatory diseases and death in humans. We believe that high circulating ANGPTL2 levels are more than an inflammatory marker and may reflect the senescent cellular load of an individual.
Collapse
|
24
|
Sheng WZ, Chen YS, Tu CT, He J, Zhang B, Gao WD. ANGPTL2 expression in gastric cancer tissues and cells and its biological behavior. World J Gastroenterol 2016; 22:10364-10370. [PMID: 28058016 PMCID: PMC5175248 DOI: 10.3748/wjg.v22.i47.10364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/25/2016] [Accepted: 09/14/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To explore expression of angiopoietin-like protein 2 (ANGPTL2) and its effect on biological behavior such as proliferation and invasiveness in gastric cancer.
METHODS Western blotting was used to detect expression of ANGPTL2 in 60 human normal gastric tissues, 60 human gastric cancer tissues and gastric cell lines including GES-1, N87, SGC7901, BGC823 and PAMC82. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Transwell assay were used to detect the proliferation and invasive ability of gastric cancer cells.
RESULTS Compared to normal tissues, ANGPTL2 protein levels were significantly upregulated in gastric tissues, and this level was closely correlated with gastric tumor grade, clinical stage and lymph node metastasis. Compared to GES-1 cells, ANGPTL2 mRNA and protein levels were significantly increased in gastric cancer cells including N87, SGC7901, BGC823 and PAMC82. The expression of ANGPTL2 in highly malignant gastric cancer cell lines BGC823 and PAMC82 was significantly higher than in low malignancy gastric cancer cell lines N87 and SGC7901. MTT and Transwell experiments indicated that the proliferation rate and invasive ability of stable overexpressed gastric cancer cells was faster than in cells transfected with Lv-NC and blank control cells, and the invasive ability of stable overexpressed gastric cancer cells was higher than that of cells transfected with Lv-NC and blank control cells.
CONCLUSION ANGPTL2 contributed to proliferation and invasion of gastric cancer cells. In clinical treatment, ANGPTL2 may become a new target for treatment of gastric cancer.
Collapse
|
25
|
Thorin-Trescases N, Hayami D, Yu C, Luo X, Nguyen A, Larouche JF, Lalongé J, Henri C, Arsenault A, Gayda M, Juneau M, Lambert J, Thorin E, Nigam A. Exercise Lowers Plasma Angiopoietin-Like 2 in Men with Post-Acute Coronary Syndrome. PLoS One 2016; 11:e0164598. [PMID: 27736966 PMCID: PMC5063321 DOI: 10.1371/journal.pone.0164598] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/27/2016] [Indexed: 12/11/2022] Open
Abstract
Pro-inflammatory angiopoietin-like 2 (angptl2) promotes endothelial dysfunction in mice and circulating angptl2 is higher in patients with cardiovascular diseases. We previously reported that a single bout of physical exercise was able to reduce angptl2 levels in coronary patients. We hypothesized that chronic exercise would reduce angptl2 in patients with post-acute coronary syndrome (ACS) and endothelial dysfunction. Post-ACS patients (n = 40, 10 women) were enrolled in a 3-month exercise-based prevention program. Plasma angptl2, hs-CRP, and endothelial function assessed by scintigraphic forearm blood flow, were measured before and at the end of the study. Exercise increased VO2peak by 10% (p<0.05), but did not significantly affect endothelial function, in both men and women. In contrast, exercise reduced angptl2 levels only in men (-26±7%, p<0.05), but unexpectedly not in women (+30±16%), despite similar initial levels in both groups. Exercise reduced hs-CRP levels in men but not in women. In men, levels of angptl2, but not of hs-CRP, reached at the end of the training program were negatively correlated with VO2peak (r = -0.462, p = 0.012) and with endothelial function (r = -0.419, p = 0.033) measured at baseline: better initial cardiopulmonary fitness and endothelial function correlated with lower angptl2 levels after exercise. Pre-exercise angptl2 levels were lower if left ventricular ejection time was long (p<0.05) and the drop in angptl2 induced by exercise was greater if the cardiac output was high (p<0.05). In conclusion, in post-ACS men, angptl2 levels are sensitive to chronic exercise training. Low circulating angptl2 reached after training may reflect good endothelial and cardiopulmonary functions.
Collapse
Affiliation(s)
| | - Doug Hayami
- Montreal Heart Institute, Research Center, University of Montreal, Montreal, Quebec, Canada
- Cardiac Rehabilitation and Prevention Center (EPIC) of the Montreal Heart Institute, University of Montreal, Montreal, Quebec, Canada
| | - Carol Yu
- Montreal Heart Institute, Research Center, University of Montreal, Montreal, Quebec, Canada
- Departments of Pharmacology and Surgery, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Xiaoyan Luo
- Montreal Heart Institute, Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Albert Nguyen
- Montreal Heart Institute, Research Center, University of Montreal, Montreal, Quebec, Canada
- Departments of Pharmacology and Surgery, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Jean-François Larouche
- Montreal Heart Institute, Research Center, University of Montreal, Montreal, Quebec, Canada
- Cardiac Rehabilitation and Prevention Center (EPIC) of the Montreal Heart Institute, University of Montreal, Montreal, Quebec, Canada
| | - Julie Lalongé
- Cardiac Rehabilitation and Prevention Center (EPIC) of the Montreal Heart Institute, University of Montreal, Montreal, Quebec, Canada
| | - Christine Henri
- Montreal Heart Institute, Research Center, University of Montreal, Montreal, Quebec, Canada
| | - André Arsenault
- Montreal Heart Institute, Research Center, University of Montreal, Montreal, Quebec, Canada
- Montreal Behavioral Medicine Centre, Montreal, Quebec, Canada
| | - Mathieu Gayda
- Montreal Heart Institute, Research Center, University of Montreal, Montreal, Quebec, Canada
- Cardiac Rehabilitation and Prevention Center (EPIC) of the Montreal Heart Institute, University of Montreal, Montreal, Quebec, Canada
| | - Martin Juneau
- Montreal Heart Institute, Research Center, University of Montreal, Montreal, Quebec, Canada
- Cardiac Rehabilitation and Prevention Center (EPIC) of the Montreal Heart Institute, University of Montreal, Montreal, Quebec, Canada
| | - Jean Lambert
- Montreal Heart Institute, Research Center, University of Montreal, Montreal, Quebec, Canada
- School of Public Health, University of Montreal, Montreal, Quebec, Canada
| | - Eric Thorin
- Montreal Heart Institute, Research Center, University of Montreal, Montreal, Quebec, Canada
- Departments of Pharmacology and Surgery, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
- * E-mail:
| | - Anil Nigam
- Montreal Heart Institute, Research Center, University of Montreal, Montreal, Quebec, Canada
- Cardiac Rehabilitation and Prevention Center (EPIC) of the Montreal Heart Institute, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
26
|
ANGPTL2 activity in cardiac pathologies accelerates heart failure by perturbing cardiac function and energy metabolism. Nat Commun 2016; 7:13016. [PMID: 27677409 PMCID: PMC5052800 DOI: 10.1038/ncomms13016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 08/25/2016] [Indexed: 12/21/2022] Open
Abstract
A cardioprotective response that alters ventricular contractility or promotes cardiomyocyte enlargement occurs with increased workload in conditions such as hypertension. When that response is excessive, pathological cardiac remodelling occurs, which can progress to heart failure, a leading cause of death worldwide. Mechanisms underlying this response are not fully understood. Here, we report that expression of angiopoietin-like protein 2 (ANGPTL2) increases in pathologically-remodeled hearts of mice and humans, while decreased cardiac ANGPTL2 expression occurs in physiological cardiac remodelling induced by endurance training in mice. Mice overexpressing ANGPTL2 in heart show cardiac dysfunction caused by both inactivation of AKT and sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2a signalling and decreased myocardial energy metabolism. Conversely, Angptl2 knockout mice exhibit increased left ventricular contractility and upregulated AKT-SERCA2a signalling and energy metabolism. Finally, ANGPTL2-knockdown in mice subjected to pressure overload ameliorates cardiac dysfunction. Overall, these studies suggest that therapeutic ANGPTL2 suppression could antagonize development of heart failure. Heart responds to increased workload by enlarging cardiomyocytes to preserve function, but in pathologies hypertrophy leads to heart failure. Here the authors show that ANGPTL2 activity in the heart is critical for determining beneficial vs. pathological hypertrophy via its effect on AKT-SERCA2a signaling and myocardial energy.
Collapse
|
27
|
ANGPTL2/LILRB2 signaling promotes the propagation of lung cancer cells. Oncotarget 2016; 6:21004-15. [PMID: 26056041 PMCID: PMC4673246 DOI: 10.18632/oncotarget.4217] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 05/10/2015] [Indexed: 12/29/2022] Open
Abstract
Immune inhibitory receptors expressed on various types of immune cells deliver inhibitory signals that maintain the homeostasis of the immune system. Recently we demonstrated that leukocyte immunoglobulin-like receptor subfamily B member 2 (LILRB2) and its murine homolog, paired immunoglobulin-like receptor B (PIRB), are expressed on hematopoietic stem cells and acute myeloid leukemia stem cells and function in maintenance of stemness. Herein, we determined that both LILRB2 and its soluble ligand ANGPTL2 are highly expressed in non-small cell lung cancer (NSCLC) samples, and levels are adversely related to patient prognosis. Inhibition of LILRB2 expression in NSCLC cell lines, such as A549 cells, resulted in a dramatic decrease in proliferation, colony formation, and migration. Mechanistic analyses indicated that ANGPTL2 binds LILRB2 to support the growth of lung cancer cells and that the SHP2/CaMK1/CREB axis controls the proliferation of lung cancer cell lines. Our results suggest that signaling involving ANGPTL2 and LILRB2 is important for lung cancer development and represents a novel target for treatment of this type of cancer.
Collapse
|
28
|
Cabia B, Andrade S, Carreira MC, Casanueva FF, Crujeiras AB. A role for novel adipose tissue-secreted factors in obesity-related carcinogenesis. Obes Rev 2016; 17:361-76. [PMID: 26914773 DOI: 10.1111/obr.12377] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 12/12/2022]
Abstract
Obesity, a pandemic disease, is caused by an excessive accumulation of fat that can have detrimental effects on health. Adipose tissue plays a very important endocrine role, secreting different molecules that affect body physiology. In obesity, this function is altered, leading to a dysfunctional production of several factors, known as adipocytokines. This process has been linked to various comorbidities associated with obesity, such as carcinogenesis. In fact, several classical adipocytokines with increased levels in obesity have been demonstrated to exert a pro-carcinogenic role, including leptin, TNF-α, IL-6 and resistin, whereas others like adiponectin, with decreased levels in obesity, might have an anti-carcinogenic function. In this expanding field, new proteomic techniques and approaches have allowed the identification of novel adipocytokines, a number of which exhibit an altered production in obesity and type 2 diabetes and thus are related to adiposity. Many of these novel adipocytokines have also been identified in various tumour types, such as that of the breast, liver or endometrium, thereby increasing the list of potential contributors to carcinogenesis. This review is focused on the regulation of these novel adipocytokines by obesity, including apelin, endotrophin, FABP4, lipocalin 2, omentin-1, visfatin, chemerin, ANGPTL2 or osteopontin, emphasizing its involvement in tumorigenesis.
Collapse
Affiliation(s)
- B Cabia
- Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Madrid, Spain
| | - S Andrade
- Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Madrid, Spain
| | - M C Carreira
- Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Madrid, Spain
| | - F F Casanueva
- Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Madrid, Spain
| | - A B Crujeiras
- Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Madrid, Spain
| |
Collapse
|
29
|
Toiyama Y, Tanaka K, Kitajima T, Shimura T, Imaoka H, Mori K, Okigami M, Yasuda H, Okugawa Y, Saigusa S, Ohi M, Inoue Y, Mohri Y, Goel A, Kusunoki M. Serum angiopoietin-like protein 2 as a potential biomarker for diagnosis, early recurrence and prognosis in gastric cancer patients. Carcinogenesis 2015; 36:1474-83. [PMID: 26420253 DOI: 10.1093/carcin/bgv139] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 09/10/2015] [Indexed: 12/11/2022] Open
Abstract
Chronic inflammation of gastric mucosa by Helicobacter pylori infection can initiate gastric carcinogenesis. As angiopoietin-like protein 2 (ANGPTL2) mediates inflammation and inflammation-associated carcinogenesis, we investigated the functional and clinical significance of ANGPTL2 in human gastric cancer (GC). SiRNA knockdown studies were performed for the functional assessment of ANGPTL2 in GC cell lines. ANGPTL2 expression was evaluated immunohistochemically in 192 tissue specimens from GC patients. In addition, we screened serum ANGPTL2 levels from 32 GC patients and 23 healthy controls; and validated these results in 194 serum samples from GC patients and 45 healthy controls by ELISA. ANGPTL2 knockdown caused anoikis and inhibited proliferation, invasion and migration in GC cells. ANGPTL2 expression was upregulated in GC tissues compared to normal gastric mucosa; and high ANGPTL2 expression was significantly associated with tumor progression, early recurrence (P = 0.003) and poor prognosis (P = 0.007). Serum ANGPTL2 in GC patients was significantly higher than for healthy controls (P < 0.05), and accurately distinguished GC patients from healthy control (AUC = 0.865). The validation step confirmed significantly higher serum ANGPTL2 levels in GC patients than healthy controls (P < 0.0001). Receiver operating characteristic curves yielded robust AUC value (0.831) accompanied by high sensitivity (73.0%) and specificity (82.2%) in distinguishing GC patients from healthy controls. High serum ANGPTL2, rather than its expression in matched tissues, was significantly associated with tumor progression, and emerged as an independent marker for recurrence (HR: 5.05, P = 0.0004) and prognosis (HR: 3.6, P = 0.01). Serum ANGPTL2 expression is a potential noninvasive biomarker for diagnosis, early recurrence and prognosis of GC patients.
Collapse
Affiliation(s)
- Yuji Toiyama
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Graduate School of Medicine, Mie University, 2-174 Edobashi, Mie 514-8507, Japan and Center for Gastrointestinal Research and Center for Epigenetics, Cancer Preventino and Cancer genomics, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, 3500 Gaston Avenue, Suite H-250, Dallas, TX 75246-2017, USA
| | - Koji Tanaka
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Graduate School of Medicine, Mie University, 2-174 Edobashi, Mie 514-8507, Japan and
| | - Takahito Kitajima
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Graduate School of Medicine, Mie University, 2-174 Edobashi, Mie 514-8507, Japan and
| | - Tadanobu Shimura
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Graduate School of Medicine, Mie University, 2-174 Edobashi, Mie 514-8507, Japan and
| | - Hiroki Imaoka
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Graduate School of Medicine, Mie University, 2-174 Edobashi, Mie 514-8507, Japan and
| | - Koichiro Mori
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Graduate School of Medicine, Mie University, 2-174 Edobashi, Mie 514-8507, Japan and
| | - Masato Okigami
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Graduate School of Medicine, Mie University, 2-174 Edobashi, Mie 514-8507, Japan and
| | - Hiromi Yasuda
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Graduate School of Medicine, Mie University, 2-174 Edobashi, Mie 514-8507, Japan and
| | - Yoshinaga Okugawa
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Graduate School of Medicine, Mie University, 2-174 Edobashi, Mie 514-8507, Japan and Center for Gastrointestinal Research and Center for Epigenetics, Cancer Preventino and Cancer genomics, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, 3500 Gaston Avenue, Suite H-250, Dallas, TX 75246-2017, USA
| | - Susumu Saigusa
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Graduate School of Medicine, Mie University, 2-174 Edobashi, Mie 514-8507, Japan and
| | - Masaki Ohi
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Graduate School of Medicine, Mie University, 2-174 Edobashi, Mie 514-8507, Japan and
| | - Yasuhiro Inoue
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Graduate School of Medicine, Mie University, 2-174 Edobashi, Mie 514-8507, Japan and
| | - Yasuhiko Mohri
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Graduate School of Medicine, Mie University, 2-174 Edobashi, Mie 514-8507, Japan and
| | - Ajay Goel
- Center for Gastrointestinal Research and Center for Epigenetics, Cancer Preventino and Cancer genomics, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, 3500 Gaston Avenue, Suite H-250, Dallas, TX 75246-2017, USA
| | - Masato Kusunoki
- Division of Reparative Medicine, Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Graduate School of Medicine, Mie University, 2-174 Edobashi, Mie 514-8507, Japan and
| |
Collapse
|
30
|
ANGPTL2 increases bone metastasis of breast cancer cells through enhancing CXCR4 signaling. Sci Rep 2015; 5:9170. [PMID: 25773070 PMCID: PMC4360633 DOI: 10.1038/srep09170] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/23/2015] [Indexed: 01/08/2023] Open
Abstract
Bone metastasis of breast cancer cells is a major concern, as it causes increased morbidity and mortality in patients. Bone tissue-derived CXCL12 preferentially recruits breast cancer cells expressing CXCR4 to bone metastatic sites. Thus, understanding how CXCR4 expression is regulated in breast cancer cells could suggest approaches to decrease bone metastasis of breast tumor cells. Here, we show that tumor cell-derived angiopoietin-like protein 2 (ANGPTL2) increases responsiveness of breast cancer cells to CXCL12 by promoting up-regulation of CXCR4 in those cells. In addition, we used a xenograft mouse model established by intracardiac injection of tumor cells to show that ANGPTL2 knockdown in breast cancer cells attenuates tumor cell responsiveness to CXCL12 by decreasing CXCR4 expression in those cells, thereby decreasing bone metastasis. Finally, we found that ANGPTL2 and CXCR4 expression levels within primary tumor tissues from breast cancer patients are positively correlated. We conclude that tumor cell-derived ANGPTL2 may increase bone metastasis by enhancing breast tumor cell responsiveness to CXCL12 signaling through up-regulation of tumor cell CXCR4 expression. These findings may suggest novel therapeutic approaches to treat metastatic breast cancer.
Collapse
|
31
|
Ide S, Toiyama Y, Shimura T, Kawamura M, Yasuda H, Saigusa S, Ohi M, Tanaka K, Mohri Y, Kusunoki M. Angiopoietin-Like Protein 2 Acts as a Novel Biomarker for Diagnosis and Prognosis in Patients with Esophageal Cancer. Ann Surg Oncol 2015; 22:2585-92. [PMID: 25564164 DOI: 10.1245/s10434-014-4315-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND Angiopoietin-like protein 2 (ANGPTL2) mediates chronic inflammation. Tumor cell-derived ANGPTL2 promotes tumor invasion and angiogenesis. Overexpression of ANGPTL2 in tumor cells is associated with tumor progression and has been recognized in lung, breast, colon, and gastric cancer. However, to our knowledge the functional and clinical significance of ANGPTL2 expression has not been investigated in patients with esophageal cancer (EC). METHODS First, in vitro assays were performed for functional analysis of ANGPTL2 using small interfering RNA. Next, ANGPTL2 expression in EC tissues (n = 71) was evaluated by immunohistochemistry (IHC in patients with EC (n = 71). Finally, serum ANGPLT2 levels from patients with EC (n = 71) and healthy controls (n = 35) were evaluated using enzyme-linked immunosorbent assay. RESULTS Knockdown of ANGPTL2 expression decreased the proliferative, invasive, and migration capacity in EC cell lines. ANGPTL2 expression in EC tissues was significantly elevated in patients with a high T stage, squamous cell carcinoma, and high TNM stage. Patients with high ANGPTL2 expression had significantly poorer overall and disease-free survival than those with low expression. Furthermore, high ANGPTL2 expression in EC tissues was an independent predictive marker for a poor prognosis. On the other hand, the serum ANGPTL2 level in patients with EC was significantly higher than that in healthy controls, and allowed for highly accurate discrimination between patients with and without EC. However, no significant association between serum ANGPTL2 levels and clinicopathological findings was observed in patients with EC. CONCLUSIONS We have demonstrated novel evidence for the clinical significance of ANGPTL2 as a biomarker in patients with EC.
Collapse
Affiliation(s)
- Shozo Ide
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Oike Y, Kadomatsu T, Endo M. The role of ANGPTL2-induced chronic inflammation in lifestyle diseases and cancer. Inflamm Regen 2015. [DOI: 10.2492/inflammregen.35.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Motoyoshi Endo
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
33
|
SATO RYUTA, YAMASAKI MUTSUSHI, HIRAI KENICHI, MATSUBARA TAKANORI, NOMURA TAKEO, SATO FUMINORI, MIMATA HIROMITSU. Angiopoietin-like protein 2 induces androgen-independent and malignant behavior in human prostate cancer cells. Oncol Rep 2015; 33:58-66. [PMID: 25370833 PMCID: PMC4254678 DOI: 10.3892/or.2014.3586] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 10/06/2014] [Indexed: 12/30/2022] Open
Abstract
Angiopoietin-like proteins (ANGPTLs), which comprise 7 members (ANGPTL1-ANGPTL7), structurally resemble angiopoietins. We investigated the roles of ANGPTLs in the acquisition of androgen independence and the malignant behavior of human prostate cancer cells. Expression of ANGPTL messenger RNA (mRNA) and proteins were ascertained using RT-qPCR and western blot analysis in human prostate cancer cell lines. Androgen‑dependent LNCaP and androgen-independent LNCaP/AI cells, respectively, were cultured in fetal bovine and charcoal-stripped medium. Cell proliferation, androgen dependence, migration and invasion, respectively, were examined under the overexpression and knockdown of ANGPTL2 by transfection of ANGPTL2 cDNA and its small‑interfering RNA (siRNA). The effects of exogenous ANGPTL2 and blocking of its receptor, integrin α5β1, were also investigated. Human prostate cancer cell lines predominantly expressed ANGPTL2 among the members. Interrupting ANGPTL2 expression with siRNA suppressed the proliferation, migration and invasion of LNCaP cells. LNCaP/AI cells showed a higher ANGPTL2 expression than that of LNCaP cells. Furthermore, siRNA led to apoptosis of LNCaP/AI cells. The ANGPTL2-overexpressing LNCaP cells markedly increased proliferation, epithelial-to-mesenchymal transition (EMT) and malignant behavior in androgen‑deprived medium. The migration rates were increased depending on the concentration of ANGPTL2 recombinant protein and were inhibited by anti-integrin α5β1 antibodies. To the best of our knowledge, this is the first study to elucidate the expression of ANGPTL2 in human prostate cancer cells. ANGPTL2 may be important in the acquisition of androgen independency and tumor progression of prostate cancer in an autocrine and/or paracrine manner via the integrin α5β1 receptor. Targeting ANGPTL2 may therefore be an efficacious therapeutic modality for prostate cancer.
Collapse
Affiliation(s)
- RYUTA SATO
- Department of Urology, Oita University Faculty of Medicine, Hasama, Yufu-city, Oita 879-5593, Japan
| | - MUTSUSHI YAMASAKI
- Department of Urology, Oita University Faculty of Medicine, Hasama, Yufu-city, Oita 879-5593, Japan
| | - KENICHI HIRAI
- Department of Urology, Oita University Faculty of Medicine, Hasama, Yufu-city, Oita 879-5593, Japan
| | - TAKANORI MATSUBARA
- Department of Urology, Oita University Faculty of Medicine, Hasama, Yufu-city, Oita 879-5593, Japan
| | - TAKEO NOMURA
- Department of Urology, Oita University Faculty of Medicine, Hasama, Yufu-city, Oita 879-5593, Japan
| | - FUMINORI SATO
- Department of Urology, Oita University Faculty of Medicine, Hasama, Yufu-city, Oita 879-5593, Japan
| | - HIROMITSU MIMATA
- Department of Urology, Oita University Faculty of Medicine, Hasama, Yufu-city, Oita 879-5593, Japan
| |
Collapse
|
34
|
Angiopoietin-like-2: a multifaceted protein with physiological and pathophysiological properties. Expert Rev Mol Med 2014; 16:e17. [PMID: 25417860 DOI: 10.1017/erm.2014.19] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Angptl2 is a multifaceted protein, displaying both physiological and pathological functions, in which scientific and clinical interest is growing exponentially within the past few years. Its physiological functions are not well understood, but angptl2 was first acknowledged for its pro-angiogenic and antiapoptotic capacities. In addition, angptl2 can be considered a growth factor, since it increases survival and expansion of hematopoietic stem cells and may promote vasculogenesis. Finally, angptl2 has an important, but largely unrecognised, physiological role: in the cytosol, angptl2 binds to type 1A angiotensin II receptors and induces their recycling, with recovery of the receptor signal functions. Despite these important physiological properties, angptl2 is better acknowledged for its deleterious pro-inflammatory properties and its contribution in multiple chronic diseases such as cancer, diabetes, atherosclerosis, metabolic disorders and many other chronic diseases. This review aims at presenting an updated description of both the beneficial and deleterious biological properties of angptl2, in addition to its molecular signalling pathways and transcriptional regulation. The multiplicity of diseases in which angptl2 contributes makes it a new highly relevant clinical therapeutic target.
Collapse
|
35
|
Toiyama Y, Tanaka K, Kitajima T, Shimura T, Kawamura M, Kawamoto A, Okugawa Y, Saigusa S, Hiro J, Inoue Y, Mohri Y, Goel A, Kusunoki M. Elevated serum angiopoietin-like protein 2 correlates with the metastatic properties of colorectal cancer: a serum biomarker for early diagnosis and recurrence. Clin Cancer Res 2014; 20:6175-86. [PMID: 25294915 DOI: 10.1158/1078-0432.ccr-14-0007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Angiopoietin-like protein 2 (ANGPTL2) is a mediator of chronic inflammation and inflammatory carcinogenesis. The biologic and clinical significance of ANGPTL2 remains unknown in human cancer. Therefore, we investigated the function of ANGPTL2 and evaluated its clinical significance in both primary tumors and matched sera in patients with colorectal cancer. EXPERIMENTAL DESIGN A colorectal cancer cell line was transfected with siRNA against ANGPTL2 for the assessment of its function. We examined ANGPTL2 expression in colorectal cancer tissues (n = 195) by immunohistochemistry. Finally, we screened serum ANGPTL2 levels from 32 colorectal cancers and 23 normal controls (NC), and validated these results in serum samples obtained from 195 colorectal cancers and 45 NCs by ELISA. RESULTS Knockdown of ANGPTL2 in vitro significantly inhibited cell proliferation, migration, and invasion, whereas it enhanced anoikis. ANGPTL2 was overexpressed in colorectal cancer tissues, and was significantly associated with advanced T stage, lymph node, and liver metastasis. Likewise, serum ANGPTL2 levels in colorectal cancers were significantly higher than NCs (P < 0.01), and allowed distinguishing of colorectal cancers from NCs with high accuracy (AUC = 0.837). The subsequent validation step confirmed that serum ANGPTL2 levels in colorectal cancers were significantly higher than in NCs (P < 0.0001), and had a high AUC value (0.885) for distinguishing colorectal cancers from NCs. High serum ANGPTL2 was significantly associated with advanced T stage, lymph node and liver metastasis, early relapse, and poor prognosis in colorectal cancers. CONCLUSION Serum ANGPTL2 is a novel diagnostic and recurrence-predictive biomarker in patients with colorectal cancer.
Collapse
Affiliation(s)
- Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie, Japan.
| | - Koji Tanaka
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie, Japan
| | - Takahito Kitajima
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie, Japan
| | - Tadanobu Shimura
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie, Japan
| | - Mikio Kawamura
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie, Japan
| | - Aya Kawamoto
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie, Japan
| | - Yoshinaga Okugawa
- Gastrointestinal Cancer Research Laboratory, Division of Gastroenterology, Department of Internal Medicine, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Susumu Saigusa
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie, Japan
| | - Junichiro Hiro
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie, Japan
| | - Yasuhiro Inoue
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie, Japan
| | - Yasuhiko Mohri
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie, Japan
| | - Ajay Goel
- Gastrointestinal Cancer Research Laboratory, Division of Gastroenterology, Department of Internal Medicine, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Masato Kusunoki
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie, Japan
| |
Collapse
|
36
|
Kadomatsu T, Endo M, Miyata K, Oike Y. Diverse roles of ANGPTL2 in physiology and pathophysiology. Trends Endocrinol Metab 2014; 25:245-54. [PMID: 24746520 DOI: 10.1016/j.tem.2014.03.012] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/18/2014] [Accepted: 03/25/2014] [Indexed: 12/12/2022]
Abstract
Stresses based on aging and lifestyle can cause tissue damage. Repair of damage by tissue remodeling is often meditated by communications between parenchymal and stromal cells via cell-cell contact or humoral factors. However, loss of tissue homeostasis leads to chronic inflammation and pathological tissue remodeling. Angiopoietin-like protein 2 (ANGPTL2) maintains tissue homeostasis by promoting adaptive inflammation and subsequent tissue reconstruction, whereas excess ANGPTL2 activation induced by prolonged stress promotes breakdown of tissue homeostasis due to chronic inflammation and irreversible tissue remodeling, promoting development of various metabolic diseases. Thus, it is important to define how ANGPTL2 signaling is regulated in order to understand mechanisms underlying disease development. Here, we focus on ANGPTL2 function in physiology and pathophysiology.
Collapse
Affiliation(s)
- Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Motoyoshi Endo
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan.
| |
Collapse
|