1
|
Avdeef A, Serajuddin ATM, Kandagatla HP. Aqueous Solubility of Sodium and Chloride Salts of Glycine─"Uncommon" Common-Ion Effects of Self-Titrating Solids. Mol Pharm 2025; 22:895-905. [PMID: 39754517 DOI: 10.1021/acs.molpharmaceut.4c01066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Although glycine is the simplest of the amino acids, its solution and solid-state properties are far from straightforward. The aqueous solubility of glycine plays an important role in various applications, including nutrition, food products, biodegradable plastics, and drug development. There is evidence that glycine in subsaturated pH 3-8 solutions forms a dimer, as suggested by several techniques. However, what takes place below pH 3 and above pH 8 in saturated solutions has been sparsely explored and is thought to exhibit complex properties. Although the solubility measurements in the pH 0-13 range have been reported by several groups, the interlaboratory variance between the data below pH 3 and above pH 8 has been high. In a couple of cases, there appears to be no pH dependence on solubility across the wide pH range, even though the reported glycine pKa values are 2.34 and 9.61. The solubility of the salt forms of glycine is largely uncharacterized. The solubility products of the simplest salts, glycine hydrochloride and sodium glycinate, appear not to have been published. In this study, five series of precision solubility measurements of glycine and its salts were performed at 25 °C, covering the range of pH -0.4 to 12.4, where in each case, just enough glycine was added to reach saturation. We have developed an equilibrium model to rationalize the complicated salt regions. Elemental analysis of isolated solids from saturated solutions supports the speciation model. At least three different salt forms have been indicated in acidic solutions and one salt form in alkaline solutions. Solubility products are reported here. The presence of a water-soluble cationic dimer is also proposed. Data analysis was performed with the aid of the pDISOL-X computer program. Activity corrections based on the Stokes-Robinson hydration theory have been implemented in saturated solutions with ionic strength in some cases exceeding 5 M. Although salt solubility is not a constant, since it depends on two independently controlled reactant concentrations, the salt solubility product is commonly expected to be a constant. However, in the glycine salt region below pH 3, our solubility measurements demonstrate that the solubility products depend on the total amount of added glycine in a saturated solution. We view this as an "uncommon" common-ion effect.
Collapse
Affiliation(s)
- Alex Avdeef
- in-ADME Research, New York, New York 10128, United States
| | - Abu T M Serajuddin
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, United States
| | - Hari P Kandagatla
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, United States
| |
Collapse
|
2
|
Espinoza Ballesteros M, Schöneich C. Near UV and Visible Light Photodegradation in Solid Formulations: Generation of Carbon Dioxide Radical Anions from Citrate Buffer and Fe(III). Mol Pharm 2024; 21:4618-4633. [PMID: 39110953 DOI: 10.1021/acs.molpharmaceut.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2024]
Abstract
Near UV and visible light photodegradation can target therapeutic proteins during manufacturing and storage. While the underlying photodegradation pathways are frequently not well-understood, one important aspect of consideration is the formulation, specifically the formulation buffer. Citrate is a common buffer for biopharmaceutical formulations, which can complex with transition metals, such as Fe(III). In an aqueous solution, the exposure of such complexes to light leads to the formation of the carbon dioxide radical anion (•CO2-), a powerful reductant. However, few studies have characterized such processes in solid formulations. Here, we show that solid citrate formulations containing Fe(III) lead to the photochemical formation of •CO2-, identified through DMPO spin trapping and HPLC-MS/MS analysis. Factors such as buffers, the availability of oxygen, excipients, and manufacturing processes of solid formulations were evaluated for their effect on the formation of •CO2- and other radicals such as •OH.
Collapse
Affiliation(s)
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| |
Collapse
|
3
|
Srivastava S, Singh S, Singh A. Augmenting the landscape of chimeric antigen receptor T-cell therapy. Expert Rev Anticancer Ther 2024; 24:755-773. [PMID: 38912754 DOI: 10.1080/14737140.2024.2372330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION The inception of recombinant DNA technology and live cell genomic alteration have paved the path for the excellence of cell and gene therapies and often provided the first curative treatment for many indications. The approval of the first Chimeric Antigen Receptor (CAR) T-cell therapy was one of the breakthrough innovations that became the headline in 2017. Currently, the therapy is primarily restricted to a few nations, and the market is growing at a CAGR (current annual growth rate) of 11.6% (2022-2032), as opposed to the established bio-therapeutic market at a CAGR of 15.9% (2023-2030). The limited technology democratization is attributed to its autologous nature, lack of awareness, therapy inclusion criteria, high infrastructure cost, trained personnel, complex manufacturing processes, regulatory challenges, recurrence of the disease, and long-term follow-ups. AREAS COVERED This review discusses the vision and strategies focusing on the CAR T-cell therapy democratization with mitigation plans. Further, it also covers the strategies to leverage the mRNA-based CAR T platform for building an ecosystem to ensure availability, accessibility, and affordability to the community. EXPERT OPINION mRNA-guided CAR T cell therapy is a rapidly growing area wherein a collaborative approach among the stakeholders is needed for its success.
Collapse
Affiliation(s)
| | - Sanjay Singh
- mRNA Department, Gennova Biopharmaceuticals Ltd. ITBT Park, Pune, India
| | - Ajay Singh
- mRNA Department, Gennova Biopharmaceuticals Ltd. ITBT Park, Pune, India
| |
Collapse
|
4
|
Khoshnevisan G, Emamzadeh R, Nazari M, Oliayi M, Sariri R. Uncovering the role of sorbitol in Renilla luciferase kinetics: Insights from spectroscopic and molecular dynamics studies. Biochem Biophys Rep 2024; 37:101617. [PMID: 38371529 PMCID: PMC10873868 DOI: 10.1016/j.bbrep.2023.101617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 02/20/2024] Open
Abstract
Renilla luciferase catalyzes the oxidation of coelenterazine to coelenteramide, resulting in the emission of a photon of light. This study investigated the impact of sorbitol on the structural and kinetic properties of Renilla luciferase using circular dichroism, fluorescence spectroscopy, and molecular dynamics simulations. Our investigation, carried out using circular dichroism and fluorescence analyses, as well as a thermal stability assay, has revealed that sorbitol induces conformational changes in the enzyme but does not improve its thermal stability. Moreover, through kinetic studies, it has been demonstrated that at a concentration of 0.4 M, sorbitol enhances the catalytic efficiency of Renilla luciferase. However, at higher concentrations, sorbitol results in a decrease in catalytic efficiency. Additionally, molecular dynamics simulations have shown that sorbitol increases the presence of hydrophobic pockets on the enzyme's surface. These simulations have also provided evidence that at a concentration of 0.4 M, sorbitol facilitates substrate access to the active site of the enzyme. Nevertheless, at higher concentrations, sorbitol obstructs substrate trafficking, most likely due to its impact on the gateway to the active site. This study may provide insights into the kinetic changes observed in enzymes with buried active sites, such as those with α/β hydrolase fold.
Collapse
Affiliation(s)
| | - Rahman Emamzadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mahboobeh Nazari
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mina Oliayi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | |
Collapse
|
5
|
Kopp KT, Saerens L, Voorspoels J, Van den Mooter G. Solidification and oral delivery of biologics to the colon- A review. Eur J Pharm Sci 2023; 190:106523. [PMID: 37429482 DOI: 10.1016/j.ejps.2023.106523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/16/2023] [Accepted: 07/08/2023] [Indexed: 07/12/2023]
Abstract
The oral delivery of biologics such as therapeutic proteins, peptides and oligonucleotides for the treatment of colon related diseases has been the focus of increasing attention over the last years. However, the major disadvantage of these macromolecules is their degradation propensity in liquid state which can lead to the undesirable and complete loss of function. Therefore, to increase the stability of the biologic and reduce their degradation propensity, formulation techniques such as solidification can be performed to obtain a stable solid dosage form for oral administration. Due to their fragility, stress exerted on the biologic during solidification has to be reduced with the incorporation of stabilizing excipients into the formulation. This review focuses on the state-of-the-art solidification techniques required to obtain a solid dosage form for the oral delivery of biologics to the colon and the use of suitable excipients for adequate stabilization upon solidification. The solidifying processes discussed within this review are spray drying, freeze drying, bead coating and also other techniques such as spray freeze drying, electro spraying, vacuum- and supercritical fluid drying. Further, the colon as site of absorption in both healthy and diseased state is critically reviewed and possible oral delivery systems for biologics are discussed.
Collapse
Affiliation(s)
- Katharina Tatjana Kopp
- Eurofins Amatsigroup, Industriepark-Zwijnaarde 7B, 9052 Gent, Belgium; Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49, 3000 Leuven, Belgium
| | - Lien Saerens
- Eurofins Amatsigroup, Industriepark-Zwijnaarde 7B, 9052 Gent, Belgium
| | - Jody Voorspoels
- Eurofins Amatsigroup, Industriepark-Zwijnaarde 7B, 9052 Gent, Belgium
| | - Guy Van den Mooter
- Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
6
|
Zhang Y, Richards DS, Grotemeyer EN, Jackson TA, Schöneich C. Near-UV and Visible Light Degradation of Iron (III)-Containing Citrate Buffer: Formation of Carbon Dioxide Radical Anion via Fragmentation of a Sterically Hindered Alkoxyl Radical. Mol Pharm 2022; 19:4026-4042. [PMID: 36074094 DOI: 10.1021/acs.molpharmaceut.2c00501] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Citrate is a commonly used buffer in pharmaceutical formulations which forms complexes with adventitious metals such as Fe3+. Fe3+-citrate complexes can act as potent photosensitizers under near-UV and visible light exposure, and recent studies reported evidence for the photo-production of a powerful reductant, carbon dioxide radical anion (•CO2-), from Fe3+-citrate complexes (Subelzu, N.; Schöneich, N., Mol. Pharm. 2020, 17, 4163-4179). The mechanisms of •CO2- formation are currently unknown but must be established to devise strategies against •CO2- formation in pharmaceutical formulations which rely on the use of citrate buffer. In this study, we first established complementary evidence for the photolytic generation of •CO2- from Fe3+-citrate through spin trapping and electron paramagnetic resonance (EPR) spectroscopy, and subsequently used spin trapping in conjunction with tandem mass spectrometry (MS/MS) for mechanistic studies on the pathways of •CO2- formation. Experiments with stable isotope-labeled citrate suggest that the central carboxylate group of citrate is the major source of •CO2-. Competition studies with various inhibitors (alcohols and dimethyl sulfoxide) reveal two mechanisms of •CO2- formation, where one pathway involves β-cleavage of a sterically hindered alkoxyl radical generated from the hydroxyl group of citrate.
Collapse
Affiliation(s)
- Yilue Zhang
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, Kansas 66047, United States
| | - David S Richards
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, Kansas 66047, United States
| | - Elizabeth N Grotemeyer
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Timothy A Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, Kansas 66047, United States
| |
Collapse
|
7
|
Near UV and visible light photo-degradation mechanisms in citrate buffer: one-electron reduction of peptide and protein disulfides promotes oxidation and cis/trans isomerization of unsaturated fatty acids of polysorbate 80. J Pharm Sci 2022; 111:991-1003. [DOI: 10.1016/j.xphs.2022.01.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 12/13/2022]
|
8
|
Carrara SC, Ulitzka M, Grzeschik J, Kornmann H, Hock B, Kolmar H. From cell line development to the formulated drug product: The art of manufacturing therapeutic monoclonal antibodies. Int J Pharm 2020; 594:120164. [PMID: 33309833 DOI: 10.1016/j.ijpharm.2020.120164] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/23/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023]
Abstract
Therapeutic monoclonal antibodies and related products have steadily grown to become the dominant product class within the biopharmaceutical market. Production of antibodies requires special precautions to ensure safety and efficacy of the product. In particular, minimizing antibody product heterogeneity is crucial as drug substance variants may impair the activity, efficacy, safety, and pharmacokinetic properties of an antibody, consequently resulting in the failure of a product in pre-clinical and clinical development. This review will cover the manufacturing and formulation challenges and advances of therapeutic monoclonal antibodies, focusing on improved processes to minimize variants and ensure batch-to-batch consistency. Processes put in place by regulatory agencies, such as Quality-by-Design (QbD) and current Good Manufacturing Practices (cGMP), and how their implementation has aided drug development in pharmaceutical companies will be reviewed. Advances in formulation and considerations on the intended use of a therapeutic antibody, including the route of administration and patient compliance, will be discussed.
Collapse
Affiliation(s)
- Stefania C Carrara
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany; Ferring Darmstadt Laboratory, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Michael Ulitzka
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany; Ferring Darmstadt Laboratory, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Julius Grzeschik
- Ferring Darmstadt Laboratory, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Henri Kornmann
- Ferring International Center SA, CH-1162 Saint-Prex, Switzerland
| | - Björn Hock
- Ferring International Center SA, CH-1162 Saint-Prex, Switzerland.
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany.
| |
Collapse
|
9
|
The Circular Life of Human CD38: From Basic Science to Clinics and Back. Molecules 2020; 25:molecules25204844. [PMID: 33096610 PMCID: PMC7587951 DOI: 10.3390/molecules25204844] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 11/16/2022] Open
Abstract
Monoclonal antibodies (mAbs) were initially considered as a possible “magic bullet” for in vivo elimination of tumor cells. mAbs represented the first step: however, as they were murine in nature (the earliest experience on the field), they were considered unfit for human applications. This prompted the development of techniques for cloning the variable regions of conventional murine antibodies, genetically mounted on human IgG. The last step in this years-long process was the design for the preparation of fully human reagents. The choice of the target molecule was also problematic, since cancer-specific targets are quite limited in number. To overcome this obstacle in the planning phases of antibody-mediated therapy, attention was focused on a set of normal molecules, whose quantitative distribution may balance a tissue-dependent generalized expression. The results and clinical success obtained with anti-CD20 mAbs revived interest in this type of strategy. Using multiple myeloma (MM) as a tumor model was challenging first of all because the plasma cells and their neoplastic counterpart eluded the efforts of the Workshop on Differentiation Antigens to find a target molecule exclusively expressed by these cells. For this reason, attention was turned to surface molecules which fulfill the requisites of being reasonably good targets, even if not specifically restricted to tumor cells. In 2009, we proposed CD38 as a MM target in virtue of its expression: it is absent on early hematological progenitors, has variable but generalized limited expression by normal cells, but is extremely high in plasma cells and in myeloma. Further, regulation of its expression appeared to be dependent on a variety of factors, including exposure to all-trans retinoic acid (ATRA), a potent and highly specific inducer of CD38 expression in human promyelocytic leukemia cells that are now approved for in vivo use. This review discusses the history of human CD38, from its initial characterization to its targeting in antibody-mediated therapy of human myeloma.
Collapse
|