1
|
Feng RB, Zhou QZ, Cheng R, Li P, Zhu ST, Min L, Zhang ST. Expression and Significance of N-myc downstream regulated gene 2 in the process of Esophageal Squamous Cell Carcinogenesis. Bioengineered 2022; 13:3275-3283. [PMID: 35048779 PMCID: PMC8973974 DOI: 10.1080/21655979.2022.2025685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
It has been reported that the expression of tumor suppressor gene N-myc downstream-regulated gene 2 (NDRG2) was significantly reduced in human solid tumors, including esophageal squamous cell carcinoma (ESCC). This study aimed to explore whether the difference of NDRG2 expression exists in different stages of ESCC and provides a basis for the early diagnosis and prognosis of ESCC. Immunohistochemical staining was used to investigate the expression level of NDRG2 in samples from 91 patients with mild-to-moderate dysplasia, early ESCC, and advanced ESCC. The relationship between the expression of NDRG2 and clinicopathological characteristics of the patients was analyzed. The results showed that positive expression rates of NDRG2 in tissues adjacent to early ESCC (76.7%), or from mild-to-moderate dysplasia (74.1%), and early ESCC (83.3%) were significantly higher than in tissue from advanced ESCC (55.9%). The positive expression rate in advanced ESCC was significantly lower than in the other three tissue types (p < 0.05). There was a significant difference (p < 0.05) and correlation (Cramer’s V = 0.351, p = 0.019, <0.05) between the expression of NDRG2 and the clinical stage in the 64 patients with ESCC. In conclusion, this study found that the expression of NDRG2 gradually decreased with the progression of esophageal lesions into advanced ESCC. This difference in positive expression rate was more obvious in male patients and patients under 60 years of age. Therefore, the detection of NDRG2 plays an important role in differentiating early ESCC from advanced ESCC.
Collapse
Affiliation(s)
- Rui-Bing Feng
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Qiao-Zhi Zhou
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Rui Cheng
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Sheng-Tao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Shu-Tian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| |
Collapse
|
2
|
Li R, Chen J, Gao X, Jiang G. Transcription factor KLF2 enhances the sensitivity of breast cancer cells to cisplatin by suppressing kinase WEE1. Cancer Biol Ther 2021; 22:465-477. [PMID: 34486497 DOI: 10.1080/15384047.2021.1949228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cisplatin is an effective chemotherapeutic agent in facilitating the inhibition of proliferation, migration, and invasion in cancerous cells. However, the detailed mechanism of the regulation by cisplatin of human breast cancer cells is still unclear. This study aimed to investigate the mechanism of kruppel-like factor 2 (KLF2) transcription factor in cisplatin therapy for breast cancer. RT-qPCR was performed to quantify the expression of KLF2 and WEE1 in clinical tissue samples from breast cancer patients and in MDA-MB-231 cells. ChIP assay and dual-luciferase reporter assay were used to analyze the potential-binding sites of KLF2 and WEE1 promoter. Gain- or loss-of-function approaches were used to manipulate KLF2 and WEE1 in cisplatin-treated MDA-MB-231 cells, and the mechanism of KLF2 in breast cancer was evaluated both via CCK-8 assay, flow cytometry, Transwell assay, and Western blot. Further validation of the KLF2 was performed on nude mouse models. Breast cancer tissues and cells showed a relative decline of KLF2 expression and abundant WEE1 expression. Cisplatin inhibited the proliferation, migration, and invasion of MDA-MB-231 cells. Overexpression of KLF2 enhanced the inhibitory effect of cisplatin on the malignant characteristics of MDA-MB-231 cells in vitro. KLF2 targeted WEE1 and negatively regulated its expression, thus enhancing the sensitivity to cisplatin of breast cancer cells as well as tumor-bearing mice. Overall, these results suggest that KLF2 can potentially inhibit WEE1 expression and sensitize breast cancer cells to cisplatin, thus presenting a promising adjunct treatment.
Collapse
Affiliation(s)
- Ruiqing Li
- Department of Throat and Breast Surgery, The Second Affiliated Hospital of Soochow University, Soochow P.R. China
| | - Jiejing Chen
- Department of Throat and Breast Surgery, Affiliated Hospital of Yangzhou University, Yangzhou P.R. China
| | - Xiaokang Gao
- Department of Throat and Breast Surgery, Affiliated Hospital of Yangzhou University, Yangzhou P.R. China
| | - Guoqin Jiang
- Department of Throat and Breast Surgery, The Second Affiliated Hospital of Soochow University, Soochow P.R. China
| |
Collapse
|
3
|
NDRG2 is expressed on enteric glia and altered in conditions of inflammation and oxygen glucose deprivation/reoxygenation. J Mol Histol 2020; 52:101-111. [PMID: 33205345 DOI: 10.1007/s10735-020-09927-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/11/2020] [Indexed: 01/07/2023]
Abstract
Enteric glial cells are more abundant than neurons in the enteric nervous system. Accumulating evidence has demonstrated that enteric glial cells share many properties with astrocytes and play pivotal roles in intestinal diseases. NDRG2 is specifically expressed in astrocytes and is involved in various diseases in the central nervous system. However, no studies have demonstrated the expression of NDRG2 in enteric glial cells. We performed immunostaining of adult mouse tissue, human colon sections, and primary enteric glial cells and the results showed that NDRG2 was widely expressed in enteric glial cells. Meanwhile, our results showed that NDRG2 was upregulated after treatment with pro-inflammatory cytokines and exposure to oxygen glucose deprivation/reoxygenation, indicating that NDRG2 might be involved in these conditions. Moreover, we determined that NDRG2 translocated to the nucleus after treatment with pro-inflammatory cytokines but not after exposure to oxygen glucose deprivation/reoxygenation. This study is the first to show the expression and distribution of NDRG2 in the enteric glia. Our results indicate that NDRG2 might be involved in the pathogenesis of enteric inflammation and ischemia/reperfusion injury. This study shows that NDRG2 might be a molecular target for enteric nervous system diseases.
Collapse
|
4
|
Wang G, Wang JJ, Guan R, Sun Y, Shi F, Gao J, Fu XL. Targeting Strategies for Glucose Metabolic Pathways and T Cells in Colorectal Cancer. Curr Cancer Drug Targets 2018; 19:534-550. [PMID: 30360743 DOI: 10.2174/1568009618666181015150138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 11/23/2017] [Accepted: 12/24/2017] [Indexed: 11/22/2022]
Abstract
Colorectal cancer is a heterogeneous group of diseases that result from the accumulation of different sets of genomic alterations, together with epigenomic alterations, and it is influenced by tumor-host interactions, leading to tumor cell growth and glycolytic imbalances. This review summarizes recent findings that involve multiple signaling molecules and downstream genes in the dysregulated glycolytic pathway. This paper further discusses the role of the dysregulated glycolytic pathway in the tumor initiation, progression and the concomitant systemic immunosuppression commonly observed in colorectal cancer patients. Moreover, the relationship between colorectal cancer cells and T cells, especially CD8+ T cells, is discussed, while different aspects of metabolic pathway regulation in cancer cell proliferation are comprehensively defined. Furthermore, this study elaborates on metabolism in colorectal cancer, specifically key metabolic modulators together with regulators, glycolytic enzymes, and glucose deprivation induced by tumor cells and how they inhibit T-cell glycolysis and immunogenic functions. Moreover, metabolic pathways that are integral to T cell function, differentiation, and activation are described. Selective metabolic inhibitors or immunemodulation agents targeting these pathways may be clinically useful to increase effector T cell responses for colorectal cancer treatment. However, there is a need to identify specific antigens using a cancer patient-personalized approach and combination strategies with other therapeutic agents to effectively target tumor metabolic pathways.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, 200235, Shanghai, China
| | - Jun-Jie Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, 200235, Shanghai, China
| | - Rui Guan
- Hubei University of Medicine, NO. 30 People South Road, Shiyan City, Hubei Province 442000, China
| | - Yan Sun
- Hubei University of Medicine, NO. 30 People South Road, Shiyan City, Hubei Province 442000, China
| | - Feng Shi
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province 212001, China
| | - Jing Gao
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province 212001, China
| | - Xing-Li Fu
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province 212001, China
| |
Collapse
|
5
|
Vaes N, Schonkeren SL, Brosens E, Koch A, McCann CJ, Thapar N, Hofstra RM, van Engeland M, Melotte V. A combined literature and in silico analysis enlightens the role of the NDRG family in the gut. Biochim Biophys Acta Gen Subj 2018; 1862:2140-2151. [DOI: 10.1016/j.bbagen.2018.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 12/12/2022]
|