1
|
Ommati MM, Mobasheri A, Ma Y, Xu D, Tang Z, Manthari RK, Abdoli N, Azarpira N, Lu Y, Sadeghian I, Mousavifaraz A, Nadgaran A, Nikoozadeh A, Mazloomi S, Mehrabani PS, Rezaei M, Xin H, Mingyu Y, Niknahad H, Heidari R. Taurine mitigates the development of pulmonary inflammation, oxidative stress, and histopathological alterations in a rat model of bile duct ligation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1557-1572. [PMID: 36097067 DOI: 10.1007/s00210-022-02291-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Lung injury is a significant complication associated with cholestasis/cirrhosis. This problem significantly increases the risk of cirrhosis-related morbidity and mortality. Hence, finding effective therapeutic options in this field has significant clinical value. Severe inflammation and oxidative stress are involved in the mechanism of cirrhosis-induced lung injury. Taurine (TAU) is an abundant amino acid with substantial anti-inflammatory and antioxidative properties. The current study was designed to evaluate the role of TAU in cholestasis-related lung injury. For this purpose, bile duct ligated (BDL) rats were treated with TAU (0.5 and 1% w: v in drinking water). Significant increases in the broncho-alveolar lavage fluid (BALF) level of inflammatory cells (lymphocytes, neutrophils, basophils, monocytes, and eosinophils), increased IgG, and TNF-α were detected in the BDL animals (14 and 28 days after the BDL surgery). Alveolar congestion, hemorrhage, and fibrosis were the dominant pulmonary histopathological changes in the BDL group. Significant increases in the pulmonary tissue biomarkers of oxidative stress, including reactive oxygen species formation, lipid peroxidation, increased oxidized glutathione levels, and decreased reduced glutathione, were also detected in the BDL rats. Moreover, significant myeloperoxidase activity and nitric oxide levels were seen in the lung of BDL rats. It was found that TAU significantly blunted inflammation, alleviated oxidative stress, and mitigated lung histopathological changes in BDL animals. These data suggest TAU as a potential protective agent against cholestasis/cirrhosis-related lung injury.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mobasheri
- Physics, and Technology, Faculty of Medicine, Research Unit of Medical Imaging, University of Oulu, 90014, Oulu, Finland
- Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, 3508 GA, Utrecht, The Netherlands
- Department of Regenerative Medicine, State Research Institute Center for Innovative Medicine, 08406, Vilnius, Lithuania
| | - Yanqin Ma
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Dongmei Xu
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Zhongwei Tang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Ram Kumar Manthari
- Department of Biotechnology, GITAM Institute of Science, Gandhi Institute of Technology and Management, Visakhapatnam-530045, Andhra Pradesh, India
| | - Narges Abdoli
- Food and Drug Administration, Iran Ministry of Health and Medical Education, Tehran, Iran
| | - Negar Azarpira
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yu Lu
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abolghasem Mousavifaraz
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Nadgaran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Nikoozadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahra Mazloomi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooria Sayar Mehrabani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Rezaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hu Xin
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yang Mingyu
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
De Luca D, Alonso A, Autilio C. Bile acids-induced lung injury: update of reverse translational biology. Am J Physiol Lung Cell Mol Physiol 2022; 323:L93-L106. [DOI: 10.1152/ajplung.00523.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The presence of bile acids in lung tissue is associated with some clinical features observed in various medical specialties, but it took time to understand that these are due to a "bile acid-induced lung injury" since specific translational studies and cross-disciplinary awareness were lacking. We used a reverse translational approach to update and summarize the current knowledge about the mechanisms of bile acid-induced lung injury. This has been done in a cross-disciplinary fashion since these conditions may occur in patients of various age and in different medical fields. We here define these clinical conditions, then we review the physiopathology of these conditions and the animal models used to mimic them and, finally, their pathobiology. Mechanisms of bile acid-induced lung injury have been partially clarified overtime and are represented by: 1) the interaction with secretory phospholipase A2 pathway, 2) the effect on surfactant function and structure, 3) the biological effects on inflammation and local immunity, 4) the direct cellular toxicity. These mechanisms are schematically illustrated and histological comparisons between ARDS induced by bile acids and other triggers are also provided. Based on these mechanisms we propose possible direct therapeutic applications and, finally, we discuss further research steps to improve the understanding of processes that generate pathological clinical conditions.
Collapse
Affiliation(s)
- Daniele De Luca
- Division of Pediatrics and Neonatal Critical Care, Paris Saclay University Hospital, Clamart, Paris, France
- Physiopathology and Therapeutic Innovation Unit-INSERM U999, Paris Saclay University, Le Plessis Robinson, France
| | - Alejandro Alonso
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research, Institut-Hospital, Complutense University, Madrid, Spain
| | - Chiara Autilio
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research, Institut-Hospital, Complutense University, Madrid, Spain
| |
Collapse
|