1
|
Kashizadeh A, Pastras C, Rabiee N, Mohseni-Dargah M, Mukherjee P, Asadnia M. Potential nanotechnology-based diagnostic and therapeutic approaches for Meniere's disease. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 46:102599. [PMID: 36064032 DOI: 10.1016/j.nano.2022.102599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Meniere's disease (MD) is a progressive inner ear disorder involving recurrent and prolonged episodes or attacks of vertigo with associated symptoms, resulting in a significantly reduced quality of life for sufferers. In most cases, MD starts in one ear; however, in one-third of patients, the disorder progresses to the other ear. Unfortunately, the etiology of the disease is unknown, making the development of effective treatments difficult. Nanomaterials, including nanoparticles (NPs) and nanocarriers, offer an array of novel diagnostic and therapeutic applications related to MD. NPs have specific features such as biocompatibility, biochemical stability, targetability, and enhanced visualization using imaging tools. This paper provides a comprehensive and critical review of recent advancements in nanotechnology-based diagnostic and therapeutic approaches for MD. Furthermore, the crucial challenges adversely affecting the use of nanoparticles to treat middle ear disorders are investigated. Finally, this paper provides recommendations and future directions for improving the performances of nanomaterials on theragnostic applications of MD.
Collapse
Affiliation(s)
- Afsaneh Kashizadeh
- School of Electrical and Computer Engineering, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Christopher Pastras
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia; The Menière's Laboratory, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Masoud Mohseni-Dargah
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia; Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Payal Mukherjee
- RPA Institute of Academic Surgery, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
2
|
Zou J, Hannula M, Misra S, Feng H, Labrador RH, Aula AS, Hyttinen J, Pyykkö I. Micro CT visualization of silver nanoparticles in the middle and inner ear of rat and transportation pathway after transtympanic injection. J Nanobiotechnology 2015; 13:5. [PMID: 25622551 PMCID: PMC4312601 DOI: 10.1186/s12951-015-0065-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/07/2015] [Indexed: 12/20/2022] Open
Abstract
Background Silver nanoparticles (Ag NPs) displayed strong activities in anti-bacterial, anti-viral, and anti-fungal studies and were reportedly efficient in treating otitis media. Information on distribution of AgNPs in different compartments of the ear is lacking. Objective To detect distribution of Ag NPs in the middle and inner ear and transportation pathways after transtympanic injection. Methods Contrast effect of Ag NPs in the micro CT imaging was assessed in a phantom. AgNPs at various concentrations (1.85 mM, 37.1 mM, and 370.7 mM) were administered to rat middle ear using transtympanic injection and cadaver heads were imaged using micro CT at several time points. Results The lowest concentration of Ag NPs that could be visualized using micro CT was 37.1 mM. No difference was observed between the solvents, deionized H2O and saline. Ag NPs at 37.1 mM were visible in the middle ear on 7 d post-administration. Ag NPs at 370.7 mM generated signals in the middle ear, ossicular chain, round window membrane, oval window, scala tympani, and Eustachian tube for both 4 h and 24 h time points. A gradient distribution of Ag NPs from the middle ear to the inner ear was detected. The pathways for Ag NPs to be transported from the middle ear into the inner ear are round and oval windows. Conclusion This study provided the imaging evidence that Ag NPs are able to access the inner ear in a dose-dependent manner after intratympanic administration, which is relevant to design the delivery concentration in the future clinic application in order to avoid adverse inner ear effect.
Collapse
Affiliation(s)
- Jing Zou
- Hearing and Balance Research Unit, Field of Oto-laryngology, School of Medicine, University of Tampere, Medisiinarinkatu 3, 33520, Tampere, Finland. .,Department of Otolaryngology-Head and Neck Surgery, Center for Otolaryngology-Head & Neck Surgery of Chinese PLA, Changhai Hospital, Second Military Medical University, Shanghai, China.
| | - Markus Hannula
- BioMediTech and Department of Electronics and Communications Engineering, Tampere University of Technology, Tampere, Finland.
| | - Superb Misra
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK. .,Materials Science and Engineering, Indian Institute of Technology-Gandhinagar, Ahmedabad, India.
| | - Hao Feng
- Hearing and Balance Research Unit, Field of Oto-laryngology, School of Medicine, University of Tampere, Medisiinarinkatu 3, 33520, Tampere, Finland.
| | | | - Antti S Aula
- BioMediTech and Department of Electronics and Communications Engineering, Tampere University of Technology, Tampere, Finland. .,Department of Medical Physics, Imaging Centre, Tampere University Hospital, Tampere, Finland.
| | - Jari Hyttinen
- BioMediTech and Department of Electronics and Communications Engineering, Tampere University of Technology, Tampere, Finland.
| | - Ilmari Pyykkö
- Hearing and Balance Research Unit, Field of Oto-laryngology, School of Medicine, University of Tampere, Medisiinarinkatu 3, 33520, Tampere, Finland.
| |
Collapse
|