1
|
Pollini L, Pettenuzzo I, Tijssen MAJ, Koens LH, De Koning TJ, Leuzzi V, Eggink H. Eye movement disorders in genetic dystonia syndromes: A literature overview. Parkinsonism Relat Disord 2025; 133:107325. [PMID: 39966058 DOI: 10.1016/j.parkreldis.2025.107325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/17/2025] [Accepted: 02/09/2025] [Indexed: 02/20/2025]
Abstract
With the growing possibilities in genetic testing, the number of genetic disorders associated with dystonia has constantly increased over the last few years. Accurate phenotyping is crucial to guide and interpret genetic analyses in the search for an etiological diagnosis. Although eye movements examination has proven a valuable tool in the assessment of patients with inherited movement disorders such as ataxia or parkinsonism, less is known about the association between eye movement disorders and genetic dystonia. This study aimed to summarize the most frequent eye movement disorders in monogenetic forms of dystonia as classified by the Movement Disorders Society (MDS). More than sixty genetic disorders causing dystonia were repeatedly associated with eye movement disorders. Among these, 24 are classified as DYT genes, 22 were classified by MDS as having another prominent movement disorder, and 19 are genetic disorders that manifest with dystonia but are not included in the MDS classification. Six different eye movement disorders have consistently been reported (saccadic slowing and supranuclear gaze palsy, saccadic initiation failure and oculomotor apraxia, saccadic dysmetria, oculogyric crisis, nystagmus and ophthalmoplegia). The phenotypic association of each disorder with monogenic dystonic diseases, as well as the possible underlying pathophysiological mechanisms, is described here. Our findings suggest that eye movement disorders, along with the movement phenotype, may help delineate subgroups of dystonia by reflecting disruptions in specific brain networks. Therefore, eye movement examination is a crucial part of the neurological evaluation, providing valuable insights into patients with inherited forms of dystonia.
Collapse
Affiliation(s)
- Luca Pollini
- Department of Human Neuroscience, Sapienza University of Rome, 00185, Rome, Italy; Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen (UMCG), Groningen, the Netherlands
| | - Ilaria Pettenuzzo
- Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, U.O.C. Neuropsichiatria dell'età pediatrica, Bologna, Italy; Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen (UMCG), Groningen, the Netherlands
| | - Marina A J Tijssen
- Department of Neurology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, the Netherlands; Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen (UMCG), Groningen, the Netherlands
| | - Lisette H Koens
- Department of Neurology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, the Netherlands; Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen (UMCG), Groningen, the Netherlands; Department of Neurology and Clinical Neurophysiology, Martini Ziekenhuis, Groningen, the Netherlands
| | - Tom J De Koning
- Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen (UMCG), Groningen, the Netherlands; Pediatrics, department of Clinical Sciences, Lund University, Sweden
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Sapienza University of Rome, 00185, Rome, Italy
| | - Hendriekje Eggink
- Department of Neurology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, the Netherlands; Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen (UMCG), Groningen, the Netherlands.
| |
Collapse
|
2
|
Ramón-Gómez JL, Bernal-Pacheco O, Zarante-Bahamón AM, Martínez-Córdoba N, Lince-Rivera I. [Phenotypic and genotypic spectrum of KMT2B dystonia. Description of three Colombian patients]. Rev Neurol 2024; 78:285-291. [PMID: 38743022 PMCID: PMC11407470 DOI: 10.33588/rn.7810.2023279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION KMT2B-related dystonia is a childhood-onset movement disorder characterized by focal dystonia of the lower extremities progressing to generalized dystonia with predominant cervical, cranial, and laryngeal involvement. So far, fewer than 100 variants have been reported, the vast majority being de novo mutations. The presenting frame of KMT2B dystonia, with dysmorphology features and other complex neurologic symptoms shows the spectrum of KMT2B dystonia as a probable syndromic disease, rather than an isolated early-onset dystonia, which has been the classic view of the condition. CASE REPORTS We report three patients who presented regression in their neurodevelopment, focal dystonia of the lower limbs with subsequent generalization, in whom two de novo variants were reported in the KMT2B gene, with a mean age of presentation lower than the average reported worldwide. CONCLUSIONS We describe the largest local series of patients with KMT2B dystonia in Colombia (to our knowledge), which allows us to expand the genotype-phenotype relationship of this genetic dystonia. Although many affected individuals follow a similar disease course, it is important to determine clinical features that may be associated such as neurodevelopmental regression.
Collapse
Affiliation(s)
| | | | - A M Zarante-Bahamón
- Hospital Universitario San Ignacio, Bogotá DC, Colombia
- Instituto Roosevelt, Bogotá DC, Colombia
| | | | | |
Collapse
|
3
|
Bouhamdani N, McConkey H, Leblanc A, Sadikovic B, Amor MB. Diagnostic utility of DNA methylation episignature analysis for early diagnosis of KMT2B-related disorders: case report. Front Genet 2024; 15:1346044. [PMID: 38425714 PMCID: PMC10902455 DOI: 10.3389/fgene.2024.1346044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
The lysine methyltransferase 2B (KMT2B) gene product is important for epigenetic modifications associated with active gene transcription in normal development and in maintaining proper neural function. Pathogenic variants in KMT2B have been associated with childhood-onset Dystonia-28 and Intellectual developmental disorder, autosomal dominant 68 (MRD 68) for cases of neurodevelopmental impairment without dystonia (DYT28; OMIM 617284 and MRD68; OMIM 619934, respectively). Since its first description in 2016, approximately one hundred KMT2B genetic variants have been reported with heterogeneous phenotypes, including atypical patterns of dystonia evolution and non-dystonic neurodevelopmental phenotypes. KMT2B-related disorders share many overlapping phenotypic characteristics with other neurodevelopmental disorders and delayed dystonia, that can appear later in childhood, often delaying clinical diagnosis. Furthermore, conventional genetic testing may not always provide actionable information (e.g., gene panel selection based on early clinical presentation or variants of uncertain significance), which prevents patients and families from obtaining early access to treatments and support. Herein, we describe the early diagnosis of KMT2B-related neurodevelopmental disorder by DNA methylation episignature testing in a 4-year-old patient without features of dystonia at diagnosis, which is reported to develop in more than 80% of KMT2B-related disorder cases. The proband, a 4-year-old female of Jewish-Israeli descent, presented with speech delay, microcephaly, poor weight gain, attention-deficit and hyperactivity disorder, dysmorphism, intellectual disabilities and joint hyperlaxity, but presented no signs of dystonia at initial evaluation. Episignature screening in this pre-symptomatic patient enabled accurate genetic diagnosis and timely and actionable intervention earlier in the natural history of Childhood-onset Dystonia-28.
Collapse
Affiliation(s)
- Nadia Bouhamdani
- Vitalité Health Network, Moncton, NB, Canada
- Faculty of medicine and health sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Formation Médicale du Nouveau-Brunswick, Université de Moncton, Moncton, NB, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry Western University, London, ON, Canada
| | - Amélie Leblanc
- Vitalité Health Network, Moncton, NB, Canada
- Faculty of medicine and health sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Formation Médicale du Nouveau-Brunswick, Université de Moncton, Moncton, NB, Canada
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry Western University, London, ON, Canada
| | - Mouna Ben Amor
- Vitalité Health Network, Moncton, NB, Canada
- Faculty of medicine and health sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Formation Médicale du Nouveau-Brunswick, Université de Moncton, Moncton, NB, Canada
| |
Collapse
|
4
|
Dhar D, Holla VV, Kumari R, Sriram N, Saini J, Yadav R, Pandey A, Kamble N, Muthusamy B, Pal PK. KMT2B-Related Dystonia in Indian Patients With Literature Review and Emphasis on Asian Cohort. J Mov Disord 2023; 16:285-294. [PMID: 37309110 PMCID: PMC10548078 DOI: 10.14802/jmd.23035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/12/2023] [Accepted: 05/29/2023] [Indexed: 06/14/2023] Open
Abstract
OBJECTIVE aaMutations in the KMT2B gene have been identified in patients previously diagnosed with idiopathic dystonia. Literature on KMT2B-related dystonia is sparse in the Indian and Asian populations. METHODS aaWe report seven patients with KMT2B-related dystonia studied prospectively from May 2021 to September 2022. Patients underwent deep clinical phenotyping and genetic testing by whole-exome sequencing (WES). A systematic literature search was performed to identify the spectrum of previously published KMT2B-related disorders in the Asian subcontinent. RESULTS aaThe seven identified patients with KMT2B-related dystonia had a median age at onset of four years. The majority experienced onset in the lower limbs (n = 5, 71.4%), with generalization at a median duration of 2 years. All patients except one had complex phenotypes manifesting as facial dysmorphism (n = 4), microcephaly (n = 3), developmental delay (n = 3), and short stature (n = 1). Magnetic resonance imaging (MRI) abnormalities were present in four cases. WES revealed novel mutations in the KMT2B gene in all patients except one. Compared to the largest cohort of patients with KMT2B-related disorders, the Asian cohort, comprising 42 patients, had a lower prevalence of female patients, facial dysmorphism, microcephaly, intellectual disability, and MRI abnormalities. Protein-truncating variants were more prevalent than missense variants. While microcephaly and short stature were more common in patients with missense mutations, facial dysmorphism was more common in patients with truncating variants. Deep brain stimulation, performed in 17 patients, had satisfactory outcomes. CONCLUSION aaThis is the largest series of patients with KMT2B-related disorders from India, further expanding the clinico-genotypic spectrum. The extended Asian cohort emphasizes the unique attributes of this part of the world.
Collapse
Affiliation(s)
- Debjyoti Dhar
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Vikram V Holla
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Riyanka Kumari
- Institute of Bioinformatics, International Technology Park, Bengaluru, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Neeharika Sriram
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Jitender Saini
- Department of Neuroimaging and Intervention Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Babylakshmi Muthusamy
- Institute of Bioinformatics, International Technology Park, Bengaluru, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| |
Collapse
|