1
|
Han Y, Tong X, Zhou R, Wang Y, Chen Y, Chen L, Hong X, Wu L, Lin Z, Zhang Y, Zhang X, Hu C, Li B, Ping Y, Cao Z, Ye Z, Song Z, Li Y, Wen C, Zhou Y, Lin J, Huang S. Biodegradable Zn-5Dy Alloy with Enhanced Osteo/Angio-Genic Activity and Osteointegration Effect via Regulation of SIRT4-Dependent Mitochondrial Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307812. [PMID: 38243646 PMCID: PMC10987155 DOI: 10.1002/advs.202307812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/30/2023] [Indexed: 01/21/2024]
Abstract
Zinc (Zn)-dysprosium (Dy) binary alloys are promising biodegradable bone fracture fixation implants owing to their attractive biodegradability and mechanical properties. However, their clinical application is a challenge for bone fracture healing, due to the lack of Zn-Dy alloys with tailored proper bio-mechanical and osteointegration properties for bone regeneration. A Zn-5Dy alloy with high strength and ductility and a degradation rate aligned with the bone remodeling cycle is developed. Here, mechanical stability is further confirmed, proving that Zn-5Dy alloy can resist aging in the degradation process, thus meeting the mechanical requirements of fracture fixation. In vitro cellular experiments reveal that the Zn-5Dy alloy enhances osteogenesis and angiogenesis by elevating SIRT4-mediated mitochondrial function. In vivo Micro-CT, SEM-EDS, and immunohistochemistry analyses further indicate good biosafety, suitable biodegradation rate, and great osteointegration of Zn-5Dy alloy during bone healing, which also depends on the upregulation of SIRT4-mediated mitochondrial events. Overall, the study is the first to report a Zn-5Dy alloy that exerts remarkable osteointegration properties and has a strong potential to promote bone healing. Furthermore, the results highlight the importance of mitochondrial modulation and shall guide the future development of mitochondria-targeting materials in enhancing bone fracture healing.
Collapse
Affiliation(s)
- Yue Han
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Xian Tong
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Runqi Zhou
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Yilin Wang
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Yuge Chen
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
- Department of DentistryFaculty of Medicine and DentistryUniversity of AlbertaEdmontonT6G2R3Canada
| | - Liang Chen
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Xinhua Hong
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Linmei Wu
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Zhiqiang Lin
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Yichi Zhang
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Xuejia Zhang
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Chaoming Hu
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Bin Li
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Yifan Ping
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Zelin Cao
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Zhou Ye
- Applied Oral Sciences and Community Dental CareFaculty of DentistryUniversity of Hong KongHong Kong999077China
| | - Zhongchen Song
- Department of PeriodontologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200125China
| | - Yuncang Li
- School of EngineeringRMIT UniversityMelbourneVIC3001Australia
| | - Cuie Wen
- School of EngineeringRMIT UniversityMelbourneVIC3001Australia
| | - Yongsheng Zhou
- Department of ProsthodonticsNational Center for StomatologyNational Engineering Research Center of Oral Biomaterials and Digital Medical DevicesNational Clinical Research Center for Oral DiseaseBeijing Key Laboratory of Digital StomatologyResearch Center of Engineering and Technology for Computerized Dentistry Ministry of HealthPeking University School and Hospital of StomatologyBeijing100081China
| | - Jixing Lin
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Shengbin Huang
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| |
Collapse
|
2
|
Chen H, Huang Z, Chen C. The Role of Histone Acetylation Modification in Dental Tissue-Derived Mesenchymal Stem Cells and Odontogenesis. Cell Reprogram 2023; 25:11-19. [PMID: 36594932 DOI: 10.1089/cell.2022.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Odontogenesis is a complex physiological process that is based on dental tissue-derived mesenchymal stem cells (MSCs). Dental tissue-derived MSCs are the stem cell populations isolated and characterized from different parts of the oral cavity, and are considered as promising candidates for stem cell-based therapy. During odontogenesis, epigenetic factors can influence the proliferation, differentiation, or apoptosis of dental tissue-derived MSCs. As one of the epigenetic modifications, histone acetylation modification is critical for the proper regulation of many biological processes, including transcriptional regulation of cell cycle progression and cell fate. In odontogenesis, histone acetylation and deacetylation play crucial roles in odontogenic differentiation of dental tissue-derived MSCs. In this review, we aim to outline the general features of acetylation modification and describe their roles in odontogenic differentiation of dental tissue-derived MSCs, as well as their future implications in the field of novel regenerative therapies for the dentine-pulp complex.
Collapse
Affiliation(s)
- Haoling Chen
- Department of Pediatric Dentistry, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zijing Huang
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Chuxiao Chen
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Metabolic Remodeling Impacts the Epigenetic Landscape of Dental Mesenchymal Stem Cells. Stem Cells Int 2022; 2022:3490433. [PMID: 35422867 PMCID: PMC9005295 DOI: 10.1155/2022/3490433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/12/2022] [Indexed: 02/05/2023] Open
Abstract
Epigenetic regulation can dynamically adjust the gene expression program of cell fate decision according to the cellular microenvironment. Emerging studies have shown that metabolic activities provide fundamental components for epigenetic modifications and these metabolic-sensitive epigenetic events dramatically impact the cellular function of stem cells. Dental mesenchymal stem cells are promising adult stem cell resource for in situ injury repair and tissue engineering. In this review, we discuss the impact of metabolic fluctuations on epigenetic modifications in the oral and maxillofacial regions. The principles of the metabolic link to epigenetic modifications and the interaction between metabolite substrates and canonical epigenetic events in dental mesenchymal stem cells are summarized. The coordination between metabolic pathways and epigenetic events plays an important role in cellular progresses including differentiation, inflammatory responses, and aging. The metabolic-epigenetic network is critical for expanding our current understanding of tissue homeostasis and cell fate decision and for guiding potential therapeutic approaches in dental regeneration and infectious diseases.
Collapse
|
4
|
Sirtuins as Interesting Players in the Course of HIV Infection and Comorbidities. Cells 2021; 10:cells10102739. [PMID: 34685718 PMCID: PMC8534645 DOI: 10.3390/cells10102739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 02/07/2023] Open
Abstract
The sirtuins (SIRTs) are a family of enzymes from the group of NAD+-dependent deacetylases. Through the reaction of splitting the acetyl group of various transcription factors and histones they regulate many processes in the organism. The activity of sirtuins is linked to metabolic control, oxidative stress, inflammation and apoptosis, and they also affect the course of viral infections. For this reason, they may participate in the pathogenesis and development of many diseases, but little is known about their role in the course of human immunodeficiency virus (HIV) infection, which is the subject of this review. In the course of HIV infection, comorbidities such as: neurodegenerative disorders, obesity, insulin resistance and diabetes, lipid disorders and cardiovascular diseases, renal and bone diseases developed more frequently and faster compared to the general population. The role of sirtuins in the development of accompanying diseases in the course of HIV infection may also be interesting. There is still a lack of detailed information on this subject. The role of sirtuins, especially SIRT1, SIRT3, SIRT6, are indicated to be of great importance in the course of HIV infection and the development of the abovementioned comorbidities.
Collapse
|
5
|
Chen H, Kang J, Zhang F, Yan T, Fan W, He H, Huang F. SIRT4 regulates rat dental papilla cell differentiation by promoting mitochondrial functions. Int J Biochem Cell Biol 2021; 134:105962. [PMID: 33636397 DOI: 10.1016/j.biocel.2021.105962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/29/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION SIRT4 is a mitochondrial sirtuin. Owing to its dependance on the cofactor nicotinamide adenine dinucleotide (NAD+), SIRT4 can act as a mitochondrial metabolic sensor of cellular energy status. We have previously shown that enhancement of mitochondrial functions is vital for the odontogenic diff ;erentiation of dental papilla cells (DPCs) during dentinogenesis. However, whether SIRT4 serves as an effective regulator of DPC diff ;erentiation by affecting mitochondrial functions remains unexplored. METHODS Primary DPCs obtained from the first molar dental papilla of neonatal Sprague-Dawley rats were used in this study. The expression pattern of SIRT4 was observed by immunohistochemistry in the first molar of postnatal day 1 (P1) rats. The changes in SIRT4 expression during odontogenic DPC differentiation were evaluated using real-time quantitative polymerase chain reaction (PCR), western blotting, and immunofluorescence. DPCs with loss (small interfering RNA-mediated knockdown) and gain (plasmid transfection-induced overexpression) of SIRT4 function were used to explore the role of SIRT4 in odontogenic differentiation. Mitochondrial function assays were performed using ATP, reactive oxygen species (ROS), and NAD+/NADH kits to investigate the potential mechanisms involved in SIRT4-mediated dentinogenesis. RESULTS In the present study, we found that SIRT4 expression increased in a time-dependent manner during odontogenic differentiation bothin vivo and in vitro. Sirt4 knockdown resulted in reduced odontogenic differentiation and mineralization, whereas an opposite effect was observed with SIRT4 overexpression. Furthermore, our results verified that in addition to reducing DPC differentiation, Sirt4 knockdown could also significantly reduce ATP levels, elevate the NAD+/NADH ratio, and increase ROS levels. CONCLUSION SIRT4 regulates mitochondrial functions and the antioxidant capacity of DPCs, thereby influencing dentin formation and tooth development, a phenomenon that may provide a foundation for better understanding the specific molecular mechanisms underlying dentin regeneration.
Collapse
Affiliation(s)
- Haoling Chen
- Department of Pediatric Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jun Kang
- Department of Pediatric Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Fuping Zhang
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Tong Yan
- Department of Pediatric Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| | - Fang Huang
- Department of Pediatric Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| |
Collapse
|
6
|
Hu J, Chen W, Qiu Z, Lv H. Robust expression of SIRT6 inhibits pulpitis via activation of the TRPV1 channel. Cell Biochem Funct 2020; 38:676-682. [PMID: 32236974 DOI: 10.1002/cbf.3528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/02/2020] [Accepted: 03/13/2020] [Indexed: 12/20/2022]
Abstract
Invasion of dentinal tubules and pulp tissue by pathogenic bacteria may cause infection leading to pulpitis. Sirtuin 6 (SIRT6) is a NAD-dependent protein deacetylase encoded by the SIRT6 gene. The effect of SIRT6 on lipopolysaccharide (LPS)-induced pulpitis and its mechanism of action were discussed in this study. Dental pulp cells (DPCs) were extracted from human teeth and injected with LPS to induce inflammation. The cells injected with LPS showed substantially decreased expression of SIRT6. The overexpression of SIRT6, induced by plasmid-transfection of DPCs with SIRT6 overexpressing vector, led to a marked decrease in proinflammatory cytokines (IL-6, IL-1β, and TNF-α) and deactivation of NF kappa B pathway. Additionally, dentin matrix protein-1 (DMP1), a promoter of inflammation in dental pulp tissues, was downregulated. Further investigation revealed that SIRT6 promotes ubiquitination of the transient receptor potential vanilloid 1 (TRPV1) channel, leading to its degradation and deactivation. The role of TRPV1 in the anti-inflammatory effects of SIRT6 was determined through incubation of SIRT6-expressing dental pulp stem cells (DPSCs) with capsaicin. This incubation counteracted the effect of SIRT6 on cytokines and DMP1. The injection of lentivirus-SIRT6 attenuated LPS-induced pulpitis in vivo by suppressing TRPV1 activity. Thus, SIRT6 inhibits the TRPV1 channel during LPS-induced inflammation of dental pulp. SIGNIFICANCE OF THE STUDY: This study discussed the effect of sirtuin 6 (SIRT6) on lipopolysaccharide (LPS)-induced pulpitis as well as its mechanism of action and found that SIRT6 may be a negative regulator of pulpitis. Additionally, low expression of SIRT6 and high expression of transient receptor potential vanilloid 1 (TRPV1) in LPS-treated human dental pulp cells are closely associated with proinflammatory cytokines, dentin matrix protein 1 expression, and activation of the NF-κB pathway, which indicated that TRPV1 may be a biomarker for pulpitis and the SIRT6-TRPV1-CGRP axis maybe a clinical target due to their role regulating inflammation and neuropathic pain.
Collapse
Affiliation(s)
- Jia Hu
- Department of Endodontics, Affiliated Stomatological Hospital of Fujian Medical University, Fuzhou, Fujian, China.,Fujian Provincial Key Laboratory of Stomatology, Fuzhou, Fujian, China
| | - Weiran Chen
- Fujian Provincial Key Laboratory of Stomatology, Fuzhou, Fujian, China.,Affiliated Stomatological Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Zailing Qiu
- Fujian Provincial Key Laboratory of Stomatology, Fuzhou, Fujian, China.,Affiliated Stomatological Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Hongbing Lv
- Department of Endodontics, Affiliated Stomatological Hospital of Fujian Medical University, Fuzhou, Fujian, China.,Fujian Provincial Key Laboratory of Stomatology, Fuzhou, Fujian, China
| |
Collapse
|
7
|
Xiao F, Zhou Y, Liu Y, Xie M, Guo G. Inhibitory Effect of Sirtuin6 (SIRT6) on Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells. Med Sci Monit 2019; 25:8412-8421. [PMID: 31701920 PMCID: PMC6858786 DOI: 10.12659/msm.917118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The imbalance between bone resorption and formation is the basic mechanism underlying osteoporosis in the elderly. Osteogenesis is the differentiation of human mesenchymal stem cells (hMSCs) into osteoblasts. Sirtuin6 (SIRT6) regulates various biological functions, including differentiation. Transient receptor potential cation channel subfamily V member 1 (TRPV1) is a non-selective cation channel that can be activated by physical and chemical stimulation. However, experimental data supporting the role of SIRT6 in osteogenic differentiation (OD) of hMSCs are lacking. MATERIAL AND METHODS Differentiation of hMSCs was induced. The expressions of SIRT6, TRPV1, and CGRP were detected by Q-PCR, Western blot, and ELISA, respectively. SIRT6 was overexpressed in hMSCs by transfection. ALP activity and Alizarin Red staining were utilized to detect the effect of SIRT6 on hMSC OD. Then, capsaicin and capsazepine, the TRPV1 agonist and antagonist, respectively, were administrated to assess the role of TRPV1. RESULTS SIRT6 expression was downregulated during hMSC differentiation. SIRT6 overexpression was accompanied by reduced expression of specific genes and alkaline phosphatase (ALP) activity in osteoblasts. Furthermore, TRPV1 channel was also reduced by SIRT6 overexpression via ubiquitinating TRPV1. Capsaicin was utilized in SIRT6-overexpressed cells. Capsaicin therapy counteracted the effect of SIRT6 overexpression on OD, and markedly decreased OD. CONCLUSIONS The SIRT6-TRPV1-CGRP signal axis is the key to regulating OD in hMSCs, which could be a potential therapeutic target for osteoporosis and bone loss-related diseases.
Collapse
Affiliation(s)
- Fei Xiao
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Yun Zhou
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Yongfu Liu
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Mian Xie
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Guancheng Guo
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| |
Collapse
|
8
|
Wang BL, Wang Z, Nan X, Zhang QC, Liu W. Downregulation of microRNA-143-5p is required for the promotion of odontoblasts differentiation of human dental pulp stem cells through the activation of the mitogen-activated protein kinases 14-dependent p38 mitogen-activated protein kinases signaling pathway. J Cell Physiol 2018; 234:4840-4850. [PMID: 30362514 DOI: 10.1002/jcp.27282] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/26/2018] [Indexed: 12/28/2022]
Abstract
MicroRNAs (miRNAs) play critical roles in various biological processes including cell differentiation. Some researchers suggested that the p38 mitogen-activated protein kinases (MAPK) signaling pathway had an effect on regulating the odontoblastic differentiation of human dental pulp stem cells (hDPSCs). This study focuses on the effects of miR-143-5p on hDPSCs by regulating the p38 MAPK signaling pathway. The targeting relationship of MAPK14 and miR-143-5p targets were verified by TargetScan and dual-luciferase reporter gene assay. Through overexpression of miR-143-5p or silencing of miR-143-5p, expressions of miR-143-5p, MAPK14, Ras, MAPK kinase (MKK) 3/6, dentin sialophosphoprotein (DSPP), alkaline phosphatase (ALP), and osteocalcin (OCN) were detected by reverse transcription quantitative polymerase chain reaction. Protein expressions of MAPK14, Ras, and MKK3/6 were determined by western blot analysis. ALP and alizarin red S staining were used to detect mineralization. Initially, MAPK14 was found to be negatively regulated by miR-143-5p. Meanwhile, the upregulated miR-143-5p decreased the p38 MAPK signaling pathway related genes (MAPK14, Ras, and MKK3/6) and odontoblastic differentiation markers (ALP, DSPP, and OCN) expression. On the contrary, the downregulated miR-143-5p increased the p38 MAPK signaling pathway related genes (MAPK14, Ras, and MKK3/6) and odontoblastic differentiation markers (ALP, DSPP, and OCN) expression. Furthermore, ALP activity and mineralized nodules increased after downregulation of miR-143-5p, and after its upregulation, ALP activity and mineralized nodules decreased. Our data suggest that poor expression of miR-143-5p promotes hDPSCs odontoblastic differentiation through the activation of the p38 MAPK signaling pathway by upregulating MAPK14.
Collapse
Affiliation(s)
- Bao-Liang Wang
- Department of Stomatology, Linyi People's Hospital, Linyi, China
| | - Zhi Wang
- Department of Stomatology, Linyi People's Hospital, Linyi, China
| | - Xi Nan
- Department of Stomatology, Linyi People's Hospital, Linyi, China
| | - Qing-Cai Zhang
- Operation Room, Daqing Oilfield General Hospital, Daqing, China
| | - Wei Liu
- Department of Stomatology, Linyi People's Hospital, Linyi, China
| |
Collapse
|
9
|
Wang H, Lv C, Gu Y, Li Q, Xie L, Zhang H, Miao D, Sun W. Overexpressed Sirt1 in MSCs Promotes Dentin Formation in Bmi1-Deficient Mice. J Dent Res 2018; 97:1365-1373. [PMID: 29932801 DOI: 10.1177/0022034518781509] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Sirt1 promotes odontoblastic gene expression in human dental pulp cells, whereas the inhibition of Sirt1 downregulates the expression of those genes. To investigate whether the overexpression of Sirt1 in mesenchymal stem cells (MSCs) driven by Prx1 promoter could rescue the dentin formation defects in Bmi1-deficient (Bmi1-/-) mice, we established the MSCs overexpressing Sirt1 in Bmi1 knockout mice (Sirt1TGBmi1-/-). First, we used Prx1-Cre/ROSAnTnG mice to demonstrate that Prx1 linage cells exist mainly in the pulp horns at 4 wk of age. Second, we found that 4-wk-old Sirt1TG mice had increased tooth volume as compared with wild-type (WT) littermates. The expression level of Sirt1 was significantly higher in dental papilla mesenchymal cells of Sirt1TG mice than WT mice. Furthermore, we demonstrated that the tooth mineralization, dental volume, dentin sialoprotein-immunopositive areas, odontoblastic gene expression, and percentage of proliferating BrdU-positive cells were significantly elevated in the Sirt1TG mice and dramatically reduced in the Bmi1-/- mice versus the WT littermates at 4 wk of age. However, the areas of predentin and the percentage of TUNEL-positive apoptotic cells were significantly reduced in the Sirt1TG mice but dramatically increased in the Bmi1-/- mice as compared with the WT littermates. All these parameters were rescued in the Sirt1TGBmi1-/- mice versus the Bmi1-/- mice. Finally, by using dental papilla mesenchymal cells, we found that the overexpression of Sirt1 rescued the reduced cell proliferation and differentiation and increased the cell apoptosis caused by Bmi1 deficiency, which was associated with increased p53 deacetylation. Therefore, this study indicates that Sirt1 is a potential therapeutic target for promoting dentin formation in an anabolic approach to the treatment of dental developmental defects.
Collapse
Affiliation(s)
- H Wang
- 1 Jiangsu Key Laboratory of Oral Diseases and Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - C Lv
- 1 Jiangsu Key Laboratory of Oral Diseases and Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,2 Department of Stomatology, Taizhou People's Hospital of Jiangsu Province, Taizhou, China
| | - Y Gu
- 1 Jiangsu Key Laboratory of Oral Diseases and Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Q Li
- 1 Jiangsu Key Laboratory of Oral Diseases and Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - L Xie
- 1 Jiangsu Key Laboratory of Oral Diseases and Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - H Zhang
- 3 Center for Musculoskeletal Research, Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - D Miao
- 1 Jiangsu Key Laboratory of Oral Diseases and Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - W Sun
- 1 Jiangsu Key Laboratory of Oral Diseases and Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Kudo H, Takeichi O, Hatori K, Makino K, Himi K, Ogiso B. A potential role for the silent information regulator 2 homologue 1 (SIRT1) in periapical periodontitis. Int Endod J 2018; 51:747-757. [PMID: 29363137 DOI: 10.1111/iej.12894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 01/18/2018] [Indexed: 01/14/2023]
Abstract
AIM To investigate the role played by silent information regulator 2 homologue 1 (SIRT1) during angiogenesis of periapical periodontitis. METHODOLOGY Periapical granulomas were subjected to dual-colour immunofluorescence imaging and real-time polymerase chain reactions assaying the expression levels of SIRT1, vascular endothelial growth factor (VEGF) and VE-cadherin. The association between Ki-67 and SIRT1 expression was also examined. Human umbilical vein endothelial cells (HUVECs) were treated with a combination of lipopolysaccharide and resveratrol (a SIRT1 activator) or sirtinol (a SIRT1 inhibitor); and the levels of mRNAs encoding SIRT1, VEGF and VE-cadherin were determined. HUVEC tube formation was assayed in the presence of resveratrol or sirtinol. The Mann-Whitney U-test or the Tukey-Kramer test was used for statistical analysis. RESULTS Ki-67-expressing cells, including endothelial cells, lay adjacent to SIRT1-expressing cells in periapical granulomas. In addition, SIRT1-expressing cells were detected adjacent to VEGF-expressing cells and VEGF- or VE-cadherin-expressing endothelial cells. SIRT1, VEGF and VE-cadherin mRNA expression levels in periapical granulomas were significantly higher (P = 0.0054, 0.0090 and 0.0090, respectively) than those in healthy gingival tissues. HUVECs treated with resveratrol exhibited significantly higher expression of mRNAs encoding SIRT1, VEGF and VE-cadherin (P = 0.0019, 0.00005 and 0.0045, respectively) compared with controls, but sirtinol inhibited such expression. Resveratrol caused HUVECs to form tube-like structures, whilst sirtinol inhibited this process. CONCLUSIONS These findings suggest that SIRT1 may stimulate angiogenesis in periapical granulomas by triggering the proliferation of endothelial cells and inducing VEGF and VE-cadherin expression.
Collapse
Affiliation(s)
- H Kudo
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - O Takeichi
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan.,Division of Advanced Dental Treatment, Dental Research Centre, Nihon University School of Dentistry, Tokyo, Japan
| | - K Hatori
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan.,Division of Advanced Dental Treatment, Dental Research Centre, Nihon University School of Dentistry, Tokyo, Japan
| | - K Makino
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - K Himi
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - B Ogiso
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan.,Division of Advanced Dental Treatment, Dental Research Centre, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
11
|
Kudo H, Takeichi O, Makino K, Hatori K, Ogiso B. Expression of silent information regulator 2 homolog 1 (SIRT1) in periapical granulomas. J Oral Sci 2018; 60:411-417. [DOI: 10.2334/josnusd.17-0412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Hiroshi Kudo
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| | - Osamu Takeichi
- Department of Endodontics, Nihon University School of Dentistry
- Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry
| | - Kosuke Makino
- Department of Endodontics, Nihon University School of Dentistry
| | - Keisuke Hatori
- Department of Endodontics, Nihon University School of Dentistry
- Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry
| | - Bunnai Ogiso
- Department of Endodontics, Nihon University School of Dentistry
- Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry
| |
Collapse
|
12
|
TET1 knockdown inhibits the odontogenic differentiation potential of human dental pulp cells. Int J Oral Sci 2016; 8:110-6. [PMID: 27357322 PMCID: PMC4932775 DOI: 10.1038/ijos.2016.4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2016] [Indexed: 02/06/2023] Open
Abstract
Human dental pulp cells (hDPCs) possess the capacity to differentiate into odontoblast-like cells and generate reparative dentin in response to exogenous stimuli or injury. Ten–eleven translocation 1 (TET1) is a novel DNA methyldioxygenase that plays an important role in the promotion of DNA demethylation and transcriptional regulation in several cell lines. However, the role of TET1 in the biological functions of hDPCs is unknown. To investigate the effect of TET1 on the proliferation and odontogenic differentiation potential of hDPCs, a recombinant shRNA lentiviral vector was used to knock down TET1 expression in hDPCs. Following TET1 knockdown, TET1 was significantly downregulated at both the mRNA and protein levels. Proliferation of the hDPCs was suppressed in the TET1 knockdown groups. Alkaline phosphatase activity, the formation of mineralized nodules, and the expression levels of DSPP and DMP1 were all reduced in the TET1-knockdown hDPCs undergoing odontogenic differentiation. Based on these results, we concluded that TET1 knockdown can prevent the proliferation and odontogenic differentiation of hDPCs, which suggests that TET1 may play an important role in dental pulp repair and regeneration.
Collapse
|