1
|
Noohi P, Abdekhodaie MJ, Nekoofar MH, Galler KM, Dummer PMH. Advances in Scaffolds Used for Pulp-Dentine Complex Tissue Engineering - A Narrative Review. Int Endod J 2022; 55:1277-1316. [PMID: 36039729 DOI: 10.1111/iej.13826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/28/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022]
Abstract
Pulp necrosis in immature teeth disrupts root development and predisposes roots to fracture as a consequence of their thin walls and open apices. Regenerative endodontics is a developing treatment modality whereby necrotic pulps are replaced with newly formed healthy tissue inside the root canal. Many clinical studies have demonstrated the potential of this strategy to stimulate root maturation and apical root-end closure. However, clinical outcomes are patient-dependent and unpredictable. The development of predictable clinical protocols is achieved through the interplay of the three classical elements of tissue engineering, namely, stem cells, signaling molecules, and scaffolds. Scaffolds provide structural support for cells to adhere and proliferate and also regulate cell differentiation and metabolism. Hence, designing and fabricating an appropriate scaffold is a crucial step in tissue engineering. In this review, four main classes of scaffolds used to engineer pulp-dentine complexes, including bioceramic-based scaffolds, synthetic polymer-based scaffolds, natural polymer-based scaffolds, and composite scaffolds, are covered. Additionally, recent advances in the design, fabrication, and application of such scaffolds are analysed along with their advantages and limitations. Finally, the importance of vascular network establishment in the success of pulp-dentine complex regeneration and strategies used to create scaffolds to address this challenge are discussed.
Collapse
Affiliation(s)
- Parisa Noohi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad J Abdekhodaie
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad H Nekoofar
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences Tehran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Endodontic, Bahçeşehir University School of Dentistry, Istanbul, Turkey
| | - Kerstin M Galler
- Department of Conservative Dentistry and Periodontology, University Hospital Erlangen-Nürnberg, Erlangen, Germany
| | - Paul M H Dummer
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
2
|
Shahri F, Parhizkar A. Pivotal Local Drug Delivery Systems in Endodontics; A Review of Literature. IRANIAN ENDODONTIC JOURNAL 2020; 15:65-78. [PMID: 36704444 PMCID: PMC9709838 DOI: 10.22037/iej.v15i2.30374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/05/2020] [Accepted: 03/19/2020] [Indexed: 01/28/2023]
Abstract
Endodontic pathosis is preliminary caused by bacteria and their by-products that interact with pulpal and periradicular host tissues. The purge of the root canal system (RCS) from bacteria is a necessity for successful endodontic treatment. Different approaches have been considered to reduce the number of microorganisms and confront microbiota in the radicular area; namely chemomechanical preparation and intracanal medication. However, various studies have shown that, due to the intricate anatomy of RCS, bacteria can persist in distant areas and significantly decrease the degree of success in endodontic ministrations. Thereby, elimination of bacteria remains a challenge, specifically from the infectious root canals. In recent years, local drug delivery systems (LDDS), loaded with drugs and/or antibacterial agents, have been deliberated for the removal of microorganisms or as a medicinal adjunct to mechanical instrumentation. Owing to the resistant species and complexities in the structure of root canals, it seems that LDDS may be able to closely affect microorganisms and improve the success rate of endodontic treatment. Furthermore, they are capable of limiting drugs to RCS, and can achieve a more effective therapeutic dose/concentration in the target site. Furthermore, and due to successful outcomes, administration of LDDS has also been given great attention for regenerative purposes. Micro/nanoparticles, liposomes, nanofibers, sealers and so forth represent typical delivery systems used for endodontic treatments. This study addresses pivotal LDDS used in endodontics and their applications.
Collapse
Affiliation(s)
- Fereshteh Shahri
- Dental Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ardavan Parhizkar
- Iranian Center for Endodontic Research, Research Institute of Dental Sciences, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Orti V, Collart-Dutilleul PY, Piglionico S, Pall O, Cuisinier F, Panayotov I. Pulp Regeneration Concepts for Nonvital Teeth: From Tissue Engineering to Clinical Approaches. TISSUE ENGINEERING. PART B, REVIEWS 2018; 24:419-442. [PMID: 29724156 DOI: 10.1089/ten.teb.2018.0073] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Following the basis of tissue engineering (Cells-Scaffold-Bioactive molecules), regenerative endodontic has emerged as a new concept of dental treatment. Clinical procedures have been proposed by endodontic practitioners willing to promote regenerative therapy. Preserving pulp vitality was a first approach. Later procedures aimed to regenerate a vascularized pulp in necrotic root canals. However, there is still no protocol allowing an effective regeneration of necrotic pulp tissue either in immature or mature teeth. This review explores in vitro and preclinical concepts developed during the last decade, especially the potential use of stem cells, bioactive molecules, and scaffolds, and makes a comparison with the goals achieved so far in clinical practice. Regeneration of pulp-like tissue has been shown in various experimental conditions. However, the appropriate techniques are currently in a developmental stage. The ideal combination of scaffolds and growth factors to obtain a complete regeneration of the pulp-dentin complex is still unknown. The use of stem cells, especially from pulp origin, sounds promising for pulp regeneration therapy, but it has not been applied so far for clinical endodontics, in case of necrotic teeth. The gap observed between the hope raised from in vitro experiments and the reality of endodontic treatments suggests that clinical success may be achieved without external stem cell application. Therefore, procedures using the concept of cell homing, through evoked bleeding that permit to recreate a living tissue that mimics the original pulp has been proposed. Perspectives for pulp tissue engineering in the near future include a better control of clinical parameters and pragmatic approach of the experimental results (autologous stem cells from cell homing, controlled release of growth factors). In the coming years, this therapeutic strategy will probably become a clinical reality, even for mature necrotic teeth.
Collapse
Affiliation(s)
- Valérie Orti
- LBN, Université de Montpellier , Montpellier, France
| | | | | | - Orsolya Pall
- LBN, Université de Montpellier , Montpellier, France
| | | | | |
Collapse
|
4
|
Moonesi Rad R, Pazarçeviren E, Ece Akgün E, Evis Z, Keskin D, Şahin S, Tezcaner A. In vitro performance of a nanobiocomposite scaffold containing boron-modified bioactive glass nanoparticles for dentin regeneration. J Biomater Appl 2018; 33:834-853. [PMID: 30458663 DOI: 10.1177/0885328218812487] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Every year, many dental restoration methods are carried out in the world and most of them do not succeed. High cost of these restorations and rejection possibility of the implants are main drawbacks. For this reason, a regenerative approach for repairing the damaged dentin-pulp complex or generating a new tissue is needed. In this study, the potential of three-dimensional cellulose acetate/oxidized pullulan/gelatin-based dentin-like constructs containing 10 or 20% bioactive glass nanoparticles was studied to explore their potential for dentin regeneration. Three-dimensional nano biocomposite structures were prepared by freeze-drying/metal mold pressing methods and characterized by in vitro degradation analysis, water absorption capacity and porosity measurements, scanning electron microscopy, in vitro biomineralization analysis. During one-month incubation in phosphate buffered saline solution at 37°C, scaffolds lost about 25-30% of their weight and water absorption capacity gradually decreased with time. Scanning electron microscopy examinations showed that mean diameter of the tubular structures was about 420 µm and the distance between walls of the tubules was around 560 µm. Calcium phosphate precipitates were formed on scaffolds surfaces treated with simulated body fluid, which was enhanced by boron-modified bioactive glass addition. For cell culture studies human dental pulp stem cells were isolated from patient teeth. An improvement in cellular viability was observed for different groups over the incubation period with the highest human dental pulp stem cells viability on B7-20 scaffolds. ICP-OES analysis revealed that concentration of boron ion released from the scaffolds was between 0.2 and 1.1 mM, which was below toxic levels. Alkaline phosphatase activity and intracellular calcium amounts significantly increased 14 days after incubation with highest values in B14-10 group. Von Kossa staining revealed higher levels of mineral deposition in these groups. In this work, results indicated that developed dentin-like constructs are promising for dentin regeneration owing to presence of boron-modified bioactive glass nanoparticles.
Collapse
Affiliation(s)
- Reza Moonesi Rad
- 1 Department of Biotechnology, Middle East Technical University, Ankara, Turkey
| | - Engin Pazarçeviren
- 2 Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey
| | - Elif Ece Akgün
- 3 Department of Histology and Embryology, Afyonkocatepe University Faculty of Veterinary Medicine, Afyonkarahisar, Turkey
| | - Zafer Evis
- 4 Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey
| | - Dilek Keskin
- 4 Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey.,5 Center of Excelence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, Turkey
| | - Sıla Şahin
- 6 Topraklık Mouth and Dental Health Center, Ankara, Turkey
| | - Ayşen Tezcaner
- 4 Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey.,5 Center of Excelence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
5
|
Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv 2017; 35:530-544. [DOI: 10.1016/j.biotechadv.2017.05.006] [Citation(s) in RCA: 521] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 05/08/2017] [Accepted: 05/22/2017] [Indexed: 12/15/2022]
|
6
|
Collado-González M, Pecci-Lloret MP, García-Bernal D, Aznar-Cervantes S, Oñate-Sánchez RE, Moraleda JM, Cenis JL, Rodríguez-Lozano FJ. Biological effects of silk fibroin 3D scaffolds on stem cells from human exfoliated deciduous teeth (SHEDs). Odontology 2017; 106:125-134. [PMID: 28616672 DOI: 10.1007/s10266-017-0310-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 05/22/2017] [Indexed: 10/25/2022]
Abstract
The aim is to investigate in vitro biological effects of silk fibroin 3D scaffolds on stem cells from human exfoliated deciduous teeth (SHEDs) in terms of proliferation, morphological appearance, cell viability, and expression of mesenchymal stem cell markers. Silk fibroin 3D scaffolding materials may represent promising suitable scaffolds for their application in regenerative endodontic therapy approaches. SHEDs were cultured in silk fibroin 3D scaffolds. Then, cell numbers were counted and the Alamar blue colorimetric assay was used to analyse cell proliferation after 24, 48, 72, and 168 h of culture. The morphological features of SHEDs cultured on silk fibroin scaffolds were evaluated by scanning electron microscopy (SEM). Finally, cell viability and the expression of mesenchymal stem cell markers were analysed by flow cytometry. One-way analysis of variance (ANOVA) followed by a Bonferroni post-test was performed (P < 0.05). At 24 and 48 h of culture, SHED proliferation on scaffolds was modest compared to the control although still significant (p < 0.05). However, cell proliferation progressively increased from 72 to 168 h compared with the control (p < 0.001; p < 0.01). In addition, flow cytometry analysis showed that the culture of SHEDs on silk fibroin scaffolds did not significantly alter the level of expression of the mesenchymal markers CD73, CD90, or CD105 up to 168 h; in addition, cell viability in silk fibroin was similar to than obtained in plastic. Moreover, SEM studies revealed a suitable degree of proliferation, cell spreading, and attachment, especially after 168 h of culture. The findings from the current study suggest that silk fibroin 3D scaffolds had a favourable effect on the biological responses of SHEDs. Further in vivo investigations are required to confirm these results.
Collapse
Affiliation(s)
- M Collado-González
- Cellular Therapy and Hematopoietic Transplant Unit, Haematology Department, Virgen de la Arrixaca Clinical University Hospital, IMIB, University of Murcia, Murcia, Spain.,School of Dentistry, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - M P Pecci-Lloret
- School of Dentistry, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - D García-Bernal
- Cellular Therapy and Hematopoietic Transplant Unit, Haematology Department, Virgen de la Arrixaca Clinical University Hospital, IMIB, University of Murcia, Murcia, Spain
| | - S Aznar-Cervantes
- Biotechnology Department, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), Murcia, Spain
| | - R E Oñate-Sánchez
- School of Dentistry, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - J M Moraleda
- Cellular Therapy and Hematopoietic Transplant Unit, Haematology Department, Virgen de la Arrixaca Clinical University Hospital, IMIB, University of Murcia, Murcia, Spain
| | - J L Cenis
- Biotechnology Department, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), Murcia, Spain
| | - F J Rodríguez-Lozano
- Cellular Therapy and Hematopoietic Transplant Unit, Haematology Department, Virgen de la Arrixaca Clinical University Hospital, IMIB, University of Murcia, Murcia, Spain. .,School of Dentistry, Faculty of Medicine, University of Murcia, Murcia, Spain. .,Special Patients and Gerodontology Unit, School of Dentistry, University of Murcia, IMIB-Arrixaca, Morales Meseguer Hospital, Avda, Marqués de los Vélez s/n, 30007, Murcia, Spain.
| |
Collapse
|
7
|
Zou H, Wang G, Song F, Shi X. Investigation of Human Dental Pulp Cells on a Potential Injectable Poly(lactic-co-glycolic acid) Microsphere Scaffold. J Endod 2017; 43:745-750. [PMID: 28292602 DOI: 10.1016/j.joen.2016.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/07/2016] [Accepted: 12/13/2016] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Poly(lactic-co-glycolic acid) (PLGA) has been extensively explored in the tissue engineering field with good biocompatibility and biodegradability. PLGA microspheres' injectable potency makes it highly desirable in dentin-pulp complex regeneration. Therefore, we investigated the cell adhesion, proliferation, odontogenic differentiation, and matrix mineralization of human dental pulp cells (HDPCs) on a PLGA microsphere scaffold. We hypothesized that this scaffold might be suitable for dentin-pulp complex regeneration. METHODS PLGA microsphere scaffolds were fabricated using the double-emulsion solvent extraction technique with or without type I collagen surface modification. HDPCs were isolated from freshly extracted premolar or third molar teeth with patients' informed consent and ethical approval. Fourth-passage HDPCs (1 × 105 cells/ml) were seeded onto surface-modified or -unmodified PLGA microspheres and cultured in vitro. Cell adhesion, proliferation, and alkaline phosphatase activity were evaluated at different time points. Odontogenic-related gene expression (DMP1, DSPP, COL1, OPN, and OCN) were analyzed using quantitative real-time polymerase chain reaction. After 8 weeks of culture, samples were observed under scanning electron microscopy. RESULTS Surface modification using type I collagen significantly enhanced HDPC attachment to the PLGA microspheres and promoted cell spreading. Alkaline phosphatase activity and odontogenic-related gene expression of HDPCs cultured with PLGA microsphere scaffolds were enhanced significantly compared with HDPCs cultured without PLGA microsphere scaffolds. After 8 weeks of culture, HDPCs combined with PLGA microspheres formed 3-dimensional structures. Partial degradation of the scaffolds and matrix mineralization were also observed. CONCLUSIONS HDPCs can adhere to the PLGA microspheres, proliferate and differentiate into odontoblastlike cells, and form a 3-dimensional complex with matrix mineralization. This study may provide insight into the clinical dentin-pulp complex restoration with HDPCs and PLGA microsphere constructs.
Collapse
Affiliation(s)
- Huiru Zou
- Research Center, Tianjin Stomatological Hospital, Tianjin, China.
| | - Guanhua Wang
- Research Center, Tianjin Stomatological Hospital, Tianjin, China
| | - Fang Song
- Research Center, Tianjin Stomatological Hospital, Tianjin, China
| | - Xudong Shi
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|