1
|
Tognoloni A, Pellegrini M, Di Salvo A, Sforna M, Cagiola M, Seccaroni M, Nannarone S, Beccati F, Pressanto MC, Di Meo A, Chiaradia E. Cytotoxicity of local anaesthetics and protective effects of platelet rich plasma on equine tenocytes: An in vitro study. Vet J 2024; 306:106159. [PMID: 38849026 DOI: 10.1016/j.tvjl.2024.106159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Local anaesthetics (LAs) can have detrimental effects on rat, bovine, canine, and human tendon tissues and cells. Currently, there has been no available data on the impact of these drugs on equine tenocytes. Even if LA injection for managing painful tendon conditions in horses is limited, it is usually used via intra-articular, intrasynovial, perineural, and intrathecal as well as for lameness examinations. In this in vitro study, the cytotoxic effects of LAs, including lidocaine, mepivacaine, and bupivacaine on equine tenocytes, in the presence and absence of platelet rich plasma (PRP), were investigated. PRP accelerates tissue healing and can exert cytoprotective effects on different cell types exposed to different stressful conditions, including drugs. Results indicated that the exposure to LAs significantly reduced tenocytes viability in dose- and time-dependent manners while PRP was able to counteract their cytotoxic effects. Furthermore, microscopy and flow cytometry analyses revealed apoptosis and necrosis in equine tenocytes exposed to these drugs, that were both reduced when PRP was in the medium. These findings highlight the importance of considering the tenocyte toxicity associated with intrathecal and intraneural LA injections, as they might affect tenocytes or reduce the efficacy of associated therapies. Moreover, this study also highlights the protective effects of PRP, which could make LA injections safer.
Collapse
Affiliation(s)
- Alessia Tognoloni
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo, 4, Perugia 06126, Italy
| | - Martina Pellegrini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati" (IZSUM), Perugia, Italy
| | - Alessandra Di Salvo
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo, 4, Perugia 06126, Italy
| | - Monica Sforna
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo, 4, Perugia 06126, Italy
| | - Monica Cagiola
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati" (IZSUM), Perugia, Italy
| | - Matteo Seccaroni
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo, 4, Perugia 06126, Italy
| | - Sara Nannarone
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo, 4, Perugia 06126, Italy; Sport Horse Research Center, University of Perugia, Department of Veterinary Medicine, Perugia, Italy
| | - Francesca Beccati
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo, 4, Perugia 06126, Italy; Sport Horse Research Center, University of Perugia, Department of Veterinary Medicine, Perugia, Italy
| | - Maria Chiara Pressanto
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo, 4, Perugia 06126, Italy; Cotts Equine Hospital, Robeston Wathen, Narberth, Pembrokeshire, UK
| | - Antonio Di Meo
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo, 4, Perugia 06126, Italy
| | - Elisabetta Chiaradia
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo, 4, Perugia 06126, Italy; Sport Horse Research Center, University of Perugia, Department of Veterinary Medicine, Perugia, Italy.
| |
Collapse
|
2
|
Chang HN, Chen CK, Yu TY, Pang JHS, Hsu CC, Lin LP, Tsai WC. Lidocaine inhibits migration of tenocytes by downregulating focal adhesion kinase and paxillin phosphorylation. J Orthop Res 2024; 42:985-992. [PMID: 38044475 DOI: 10.1002/jor.25762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Lidocaine is the most frequently applied local infiltration anesthetic agent for treating tendinopathies. However, studies have discovered lidocaine to negatively affect tendon healing. In the current study, the molecular mechanisms and effects of lidocaine on tenocyte migration were evaluated. We treated tenocytes intrinsic to the Achilles tendons of Sprague-Dawley rats with lidocaine. The migration ability of cells was analyzed using electric cell-substrate impedance sensing (ECIS) and scratch wound assay. We then used a microscope to evaluate the cell spread. We assessed filamentous actin (F-actin) cytoskeleton formation through immunofluorescence staining. In addition, we used Western blot analysis to analyze the expression of phospho-focal adhesion kinase (FAK), FAK, phospho-paxillin, paxillin, and F-actin. We discovered that lidocaine had an inhibitory effect on the migration of tenocytes in the scratch wound assay and on the ECIS chip. Lidocaine treatment suppressed cell spreading and changed the cell morphology and F-actin distribution. Lidocaine reduced F-actin formation in the tenocyte during cell spreading; furthermore, it inhibited phospho-FAK, F-actin, and phospho-paxillin expression in the tenocytes. Our study revealed that lidocaine inhibits the spread and migration of tenocytes. The molecular mechanism potentially underlying this effect is downregulation of F-actin, phospho-FAK, and phospho-paxillin expression when cells are treated with lidocaine.
Collapse
Affiliation(s)
- Hsiang-Ning Chang
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan
| | - Chih-Kuang Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Taoyuan, Taoyuan City, Taiwan
| | - Tung-Yang Yu
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan
| | - Jong-Hwei S Pang
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan City, Taiwan
| | - Chih-Chin Hsu
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Keelung, Keelung City, Taiwan
| | - Li-Ping Lin
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Taoyuan, Taoyuan City, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan City, Taiwan
| | - Wen-Chung Tsai
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Taoyuan, Taoyuan City, Taiwan
- School of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Center of Comprehensive Sports Medicine, Chang Gung Memorial Hospital at Taoyuan, Taoyuan City, Taiwan
| |
Collapse
|
3
|
Effect of neurotropin on Alzheimer's disease-like changes and cognitive function in rats with chronic cerebral hypoperfusion. Neuroreport 2023; 34:170-177. [PMID: 36719834 DOI: 10.1097/wnr.0000000000001875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chronic cerebral hypoperfusion (CCH) is a main mechanism of cerebrovascular disease and is associated with various cerebrovascular and neurodegenerative diseases, including Alzheimer's disease. However, treatment of CCH in clinical practice is not ideal, but neurotropin (NTP) has been shown to have a neuroprotective effect. Therefore, this study examined the effect and possible mechanism of NTP in nerve injury caused by CCH. A rat CCH model was established by bilateral common carotid artery occlusion (2VO), and rats were treated with intragastric administration of NTP (200 nu/kg/day) for 28 consecutive days. After treatment, rats were subjected to the Morris water maze and novel object recognition test. Subsequently, an ELISA was applied to detect amyloid-β (Aβ) 1-40 and Aβ1-42 levels in rat hippocampal tissues, quantitative reverse transcription PCR assays were used to detect the mRNA expression levels of brain-derived neurotrophic factor (BDNF) and Trk B, and Western blots were used to detect the protein expression levels of BACE1, tau, p-tau, and protein kinase B (Akt)/glycogen synthase kinase 3β (GSK3β) pathway-related proteins. The rat model of CCH was successfully established by 2VO. Behavioral tests indicated that the cognitive ability of 2VO rats was severely impaired. NTP treatment greatly ameliorated the cognitive disability, reduced Aβ1-40 and Aβ1-42 levels and tau phosphorylation, and upregulated BACE1, Trk B, and BDNF expression in the hippocampus of 2VO rats. Finally, we found that NTP markedly activated Akt/GSK3β pathway activity. NTP can ameliorate cognitive disability in CCH rats possibly by reducing Aβ accumulation and tau phosphorylation in the hippocampus. These effects of NTP may be related to the Akt/GSK3β pathway activation. NTP may be a promising new drug candidate for CCH patients.
Collapse
|