1
|
Longton E, Schmit K, Fransolet M, Clement F, Michiels C. Appropriate Sequence for Afatinib and Cisplatin Combination Improves Anticancer Activity in Head and Neck Squamous Cell Carcinoma. Front Oncol 2018; 8:432. [PMID: 30345256 PMCID: PMC6182255 DOI: 10.3389/fonc.2018.00432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/17/2018] [Indexed: 12/27/2022] Open
Abstract
Despite a better understanding in head and neck tumors pathogenesis as well as improvements in radiotherapy and surgery, locally advanced head and neck squamous cell carcinoma (HNSCC) remains of poor prognosis. One promising target is the epidermal growth factor receptor (EGFR), which is overexpressed in the majority of HNSCC and is associated to tumor progression and resistance to treatment. However, in several clinical trials, the combination of EGFR inhibitors with chemotherapy and/or radiotherapy generates moderate results. In this study, we investigated the anti-tumor activity of afatinib, an irreversible pan-EGFR inhibitor, combined to cisplatin in different schedules of exposure. For that, we used two human EGFR wild-type HNSCC cell lines and we evaluated the cytotoxicity of the two drugs combined in different sequences. The efficiency of each strategy was assessed by evaluating the effects on cell cycle distribution, DNA damage, cell death and downstream pathways of ErbB family receptors. We demonstrated that cisplatin treatment followed by afatinib exposure displayed more cytotoxic effects than the opposite timing or than simultaneous association. This higher anticancer activity is probably due to afatinib-induced cell cycle arrest, which prevents the repair of cisplatin-induced DNA damage and promotes cell death by various mechanisms including apoptosis. These data suggest the importance of an appropriate timing administration between an EGFR inhibitor and a conventional chemotherapy in order to obtain the best clinical benefit for patients with a head and neck cancer.
Collapse
Affiliation(s)
- Eleonore Longton
- Unit of Biochemistry and cellular Biology, Namur Research Institut for LIfe Sciences, University of Namur, Namur, Belgium
| | - Kathleen Schmit
- Unit of Biochemistry and cellular Biology, Namur Research Institut for LIfe Sciences, University of Namur, Namur, Belgium
| | - Maude Fransolet
- Unit of Biochemistry and cellular Biology, Namur Research Institut for LIfe Sciences, University of Namur, Namur, Belgium
| | - François Clement
- Unit of Biochemistry and cellular Biology, Namur Research Institut for LIfe Sciences, University of Namur, Namur, Belgium
| | - Carine Michiels
- Unit of Biochemistry and cellular Biology, Namur Research Institut for LIfe Sciences, University of Namur, Namur, Belgium
| |
Collapse
|
2
|
Zhang HJ, Yuan GL, Liang QL, Peng XX, Cheng SA, Jiang L. Addition of bevacizumab to systemic therapy for locally advanced and metastatic nasopharyngeal carcinoma. Oncol Lett 2018; 15:7799-7805. [PMID: 29740494 PMCID: PMC5934720 DOI: 10.3892/ol.2018.8284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 02/05/2018] [Indexed: 12/21/2022] Open
Abstract
Radiotherapy is a vital treatment option for patients with nasopharyngeal carcinoma (NPC). Concurrent cisplatin-based radiochemotherapy with or without adjuvant chemotherapy had acquired good clinical effects with good local control rates. However, a number of patients present with metastasis following systemic regimens or initial diagnosis of locally advanced NPC, which cause difficulty for subsequent therapy. Therefore, there is an urgent requirement to discover novel targeted therapies. The present report describes one case of a patient with NPC and multiple metastases. The patient was treated with systemic therapy in combination with bevacizumab, palliative radiotherapy and chemotherapy following treatment with cetuximab and concurrent chemoradiotherapy in 2015. Following the addition of bevacizumab, metastases were reduced or disappeared after >2 months, and the duration of progression-free survival was 7 months. Bevacizumab is a monoclonal antibody that targets VEGF, and it is associated with angiogenesis, which causes the growth, invasion and progression of tumors. In previous studies, bevacizumab has been approved for the treatment of several types of malignant cancer and it has been able to effectively improve prognosis. In the present review, the effect of adding bevacizumab to systemic therapy for the treatment of NPC was analyzed, with a particular focus on advanced and metastatic diseases. A growing number of phase I/II clinical trials involving bevacizumab for NPC have been conducted with clinical outcomes showing improved rates of overall survival and progression-free survival as well as improvements in the quality of life of patients. However, severe or deadly toxicities can also result from combination treatment with bevacizumab. In the future, bevacizumab may become a common addition to systemic therapy for the treatment of locally advanced and metastatic NPC.
Collapse
Affiliation(s)
- Hui-Jie Zhang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Gao-Le Yuan
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Qi-Lian Liang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Xiao-Xia Peng
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Shao-Ang Cheng
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Liang Jiang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| |
Collapse
|
3
|
Cannonier SA, Gonzales CB, Ely K, Guelcher SA, Sterling JA. Hedgehog and TGFβ signaling converge on Gli2 to control bony invasion and bone destruction in oral squamous cell carcinoma. Oncotarget 2018; 7:76062-76075. [PMID: 27738315 PMCID: PMC5340177 DOI: 10.18632/oncotarget.12584] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 09/27/2016] [Indexed: 01/08/2023] Open
Abstract
Oral Squamous Cell Carcinoma (OSCC) is the sixth most common cancer worldwide. OSCC invasion into the lymph nodes and mandible correlates with increased rates of recurrence and lower overall survival. Tumors that infiltrate mandibular bone proliferate rapidly and induce bone destruction. While survival rates have increased 12% over the last 20 years, this improvement is attributed to general advances in prevention, earlier detection, and updated treatments. Additionally, despite decades of research, the molecular mechanisms of OSCC invasion into the mandible are not well understood. Parathyroid Hormone-related Protein (PTHrP), has been shown to be essential for mandibular invasion in OSCC animal models, and our previous studies demonstrate that the transcription factor Gli2 increases PTHrP expression in tumor metastasis to bone. In OSCC, we investigated regulators of Gli2, including Hedgehog, TGFβ, and Wnt signaling to elucidate how PTHrP expression is controlled. Here we show that canonical Hedgehog and TGFβ signaling cooperate to increase PTHrP expression and mandibular invasion in a Gli2-dependent manner. Additionally, in an orthotopic model of mandibular invasion, inhibition of Gli2 using shRNA resulted in a significant decrease of both PTHrP expression and bony invasion. Collectively, our findings demonstrate that multiple signaling pathways converge on Gli2 to mediate PTHrP expression and bony invasion, highlighting Gli2 as a therapeutic target to prevent bony invasion in OSCC.
Collapse
Affiliation(s)
- Shellese A Cannonier
- Department of Veteran Affairs, Tennessee Valley Healthcare System, Nashville TN 37212, USA.,Center for Bone Biology, Vanderbilt University Medical Center, Nashville TN 37232, USA.,Department of Cancer Biology, Vanderbilt University Medical Center, Nashville TN 37232, USA
| | - Cara B Gonzales
- Department of Comprehensive Dentistry, University of Texas Health Science Center San Antonio Dental School, San Antonio, TX 78229, USA
| | - Kim Ely
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville TN 37232, USA
| | - Scott A Guelcher
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville TN 37232, USA.,Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville TN 37235, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235, USA
| | - Julie A Sterling
- Department of Veteran Affairs, Tennessee Valley Healthcare System, Nashville TN 37212, USA.,Center for Bone Biology, Vanderbilt University Medical Center, Nashville TN 37232, USA.,Department of Cancer Biology, Vanderbilt University Medical Center, Nashville TN 37232, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235, USA.,Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville TN 37232, USA
| |
Collapse
|
4
|
Bossi P, Platini F. Radiotherapy plus EGFR inhibitors: synergistic modalities. CANCERS OF THE HEAD & NECK 2017; 2:2. [PMID: 31093349 PMCID: PMC6460772 DOI: 10.1186/s41199-016-0020-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 12/21/2016] [Indexed: 12/31/2022]
Abstract
Locally advanced (stage III or IV) squamous cell carcinoma of the head and neck (SCCHN) often requires multimodal treatment, consisting of a combination of surgery, radiation, and/or systemic therapy, namely chemotherapy or targeted agents. The expression of the epidermal growth factor receptor (EGFR) has been detected in more than 90% of all cases of SCCHN and has been correlated with decreased survival rates, resistance to radiotherapy, loco-regional treatment failure, and increased rates of distant metastases. This paper discusses several strategies aimed at targeting EGFR in combination with radiation. Until now, cetuximab, an anti-EGFR monoclonal antibody, is the only targeted agent that has been shown to improve overall survival in combination with radiation therapy. However, considering that there are multiple mechanisms of primary and acquired resistance to EGFR inhibitors, we focused on dissecting molecular pathways of EGFR inhibition to find alternative or complementary strategies for increasing tumour responsiveness. We suggest that the combination of treatments targeting the EGFR pathway and drugs aimed at increasing immune responses represent a promising approach that deserves to be further explored.
Collapse
Affiliation(s)
- Paolo Bossi
- Head and Neck Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Francesca Platini
- Medical Oncology Unit, University Hospital Maggiore della Carità, Novara, Italy
| |
Collapse
|
5
|
Pickhard A, Piontek G, Seidl C, Kopping S, Blechert B, Mißlbeck M, Brockhoff G, Bruchertseifer F, Morgenstern A, Essler M. ²¹³Bi-anti-EGFR radioimmunoconjugates and X-ray irradiation trigger different cell death pathways in squamous cell carcinoma cells. Nucl Med Biol 2013; 41:68-76. [PMID: 24210808 DOI: 10.1016/j.nucmedbio.2013.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/13/2013] [Accepted: 09/18/2013] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Treatment of patients with squamous cell carcinoma of head and neck is hampered by resistance of tumor cells to irradiation. Additional therapies enhancing the effect of X-ray irradiation may be beneficial. Antibodies targeting EGFR have been shown to improve the efficacy of radiation therapy. Therefore, we analyzed cytotoxicity of (213)Bi-anti-EGFR immunoconjugates in combination with X-ray irradiation. METHODS The monoclonal anti-EGFR antibody matuzumab was coupled to CHX-A"-DTPA forming stable complexes with (213)Bi. Cytotoxicity of X-ray radiation, of treatment with (213)Bi-anti-EGFR monoclonal antibodies (MAb) or of a combined treatment regimen was assayed using cell proliferation and colony formation assays in UD-SCC5 cells. Key proteins of cell-cycle arrest and cell death were examined by Western blot analysis. Cell cycle analysis was performed by flow cytometry. DNA double-strand breaks were detected via γH2AX and quantified using Definiens™ software. RESULTS Irradiation with X-rays or treatment with (213)Bi-anti-EGFR-MAb resulted in median lethal dose (LD50) values of 12 Gy or 130 kBq/mL, respectively. Treatment with 37 kBq/mL of (213)Bi-anti-EGFR-MAb or 2 Gy of X-rays had only little effect on colony formation of UD-SCC5 cells. In contrast, a combined treatment regimen (37 kBq/mL plus 2 Gy) significantly decreased colony formation and enhanced the formation of DNA double-strand breaks. As revealed by flow cytometry, radiation treatments caused accumulation of cells in the G0/G1 phase. Both treatment with (213)Bi-anti-EGFR immunoconjugates and application of the combined treatment regimen triggered activation of genes of signaling pathways involved in cell-cycle arrest and induction of apoptosis like p21/Waf, GADD45, Puma and Bax, which were only marginally modulated by X-ray irradiation of cells. CONCLUSIONS (213)Bi-anti-EGFR-MAb enhances cytotoxicity of X-ray irradiation in UD-SCC5 cells most probably due to effective induction of DNA double-strand breaks. Induction of genes involved in cell-cycle arrest and cell death is almost exclusively due to (213)Bi-anti-EGFR-MAb and seems to be independent of p53 function.
Collapse
Affiliation(s)
- Anja Pickhard
- Department of Otolaryngology Head and Neck Surgery, Technische Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kostakoglu L, Fardanesh R, Posner M, Som P, Rao S, Park E, Doucette J, Stein EG, Gupta V, Misiukiewicz K, Genden E. Early detection of recurrent disease by FDG-PET/CT leads to management changes in patients with squamous cell cancer of the head and neck. Oncologist 2013; 18:1108-17. [PMID: 24037978 DOI: 10.1634/theoncologist.2013-0068] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE The objective of this study was to compare the efficacy of surveillance high-resolution computed tomography (HRCT) and physical examination/endoscopy (PE/E) with the efficacy of fluorodeoxyglucose (FDG)-positron emission tomography (PET)/HRCT for the detection of relapse in head and neck squamous cell carcinoma (HNSCC) after primary treatment. METHODS This is a retrospective analysis of contemporaneously performed FDG-PET/HRCT, neck HRCT, and PE/E in 99 curatively treated patients with HNSCC during post-therapy surveillance to compare performance test characteristics in the detection of early recurrence or second primary cancer. RESULTS Relapse occurred in 19 of 99 patients (20%) during a median follow-up of 21 months (range: 9-52 months). Median time to first PET/HRCT was 3.5 months. The median time to radiological recurrence was 6 months (range: 2.3-32 months). FDG-PET/HRCT detected more disease recurrences or second primary cancers and did so earlier than HRCT or PE/E. The sensitivity, specificity, and positive and negative predictive values for detecting locoregional and distant recurrence or second primary cancer were 100%, 87.3%, 56.5%, and 100%, respectively, for PET/HRCT versus 61.5%, 94.9%, 66.7%, and 93.8%, respectively, for HRCT versus 23.1%, 98.7%, 75%, and 88.6%, respectively, for PE/E. In 19 patients with true positive PET/HRCT findings, a significant change in the management of disease occurred, prompting either salvage or systemic therapy. Of the 14 curatively treated patients, 11 were alive with without disease at a median follow-up of 31.5 months. CONCLUSION FDG-PET/HRCT has a high sensitivity in the early detection of relapse or second primary cancer in patients with HNSCC, with significant management implications. Given improvements in therapy and changes in HNSCC biology, appropriate modifications in current post-therapy surveillance may be required to determine effective salvage or definitive therapies.
Collapse
|
7
|
Abstract
Head and neck cancer is the sixth most common cancer worldwide. At present, globally about 650,000 new cases of squamous cell carcinoma of the head and neck (SCCHN) are diagnosed each year. The epidermal growth factor receptor (EGFR) is almost invariably expressed in SCCHN. Overexpression of the EGFR is a strong and independent unfavorable prognostic factor in SCCHN. Cetuximab is a chimeric monoclonal antibody, which binds with high affinity to the extracellular domain of the human EGFR, blocking ligand binding, resulting in inhibition of the receptor function. It also targets cytotoxic immune effector cells towards EGFR-expressing tumor cells (antibody dependent cell-mediated cytotoxicity). The addition of cetuximab to radiotherapy (RT) improves locoregional control and survival when compared to RT alone. The addition of cetuximab to platinum-based chemoradiation (CRT) is feasible but does not lead to an improved outcome. Cetuximab plus RT has never been compared prospectively to CRT, which therefore remains the standard treatment for patients with locoregionally advanced SCCHN for whom surgery is not considered the optimal treatment, provided they can tolerate CRT. The addition of cetuximab to platinum-based chemotherapy prolongs survival in patients with recurrent or metastatic SCCHN. The combination of a platinum-based regimen and cetuximab should be considered as the standard first line regimen for patients who can tolerate this treatment.
Collapse
Affiliation(s)
- Pol Specenier
- Department of Medical Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Jan B Vermorken
- Department of Medical Oncology, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
8
|
Masuda M, Toh S, Wakasaki T, Suzui M, Joe AK. Somatic evolution of head and neck cancer - biological robustness and latent vulnerability. Mol Oncol 2012; 7:14-28. [PMID: 23168041 PMCID: PMC5528403 DOI: 10.1016/j.molonc.2012.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 10/23/2012] [Accepted: 10/24/2012] [Indexed: 01/05/2023] Open
Abstract
Despite recent advancements in multidisciplinary treatments, the overall survival and quality of life of patients with advanced head and neck squamous cell carcinoma (HNSCC) have not improved significantly over the past decade. Molecular targeted therapies, which have been addressed and advanced by the concept of “oncogene addiction”, have demonstrated only limited successes so far. To explore a novel clue for clinically effective targeted therapies, we analyzed the molecular circuitry of HNSCC through the lens that HNSCC is an evolving system. In the trajectory of this somatic evolution, HNSCC acquires biological robustness under a variety of selective pressures including genetic, epigenetic, micro‐environmental and metabolic stressors, which well explains the major mechanism of “escaping from oncogene addiction”. On the other hand, this systemic view appears to instruct us approaches to target latent vulnerability of HNSCC that is masked behind the plasticity and evolvability of this complex adaptive system. There is an urgent need to develop a novel conceptual framework for the treatment of HNSCC. The biological robustness of HNSCC was analyzed through a somatic evolution model. This model well explains the mechanism of “escaping from oncogene addiction”. We discuss about the possible approaches to target vulnerability of evolving HNSCC.
Collapse
Affiliation(s)
- Muneyuki Masuda
- Department of Head & Neck Surgery, National Kyushu Cancer Center, 3-1-1, Notame, Minamiku, Fukuoka 811-1395, Japan.
| | | | | | | | | |
Collapse
|